PIASγ Enhanced SUMO-2 Modification of Nurr1 Activation-Function-1 Domain Limits Nurr1 Transcriptional Synergy

被引:23
|
作者
Arredondo, Cristian [1 ]
Orellana, Marcelo [1 ]
Vecchiola, Andrea [1 ]
Alberto Pereira, Luis [1 ]
Galdames, Leopoldo [1 ]
Estela Andres, Maria [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Cellular & Mol Biol, Fac Biol Sci, Santiago, Chile
来源
PLOS ONE | 2013年 / 8卷 / 01期
关键词
ORPHAN NUCLEAR RECEPTOR; ANDROGEN RECEPTOR; DOPAMINE NEURONS; SUMOYLATION; PATHWAY; MOTIF; RECOGNITION; MECHANISMS; REPRESSES; PROMOTER;
D O I
10.1371/journal.pone.0055035
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nurr1 (NR4A2) is a transcription factor that belongs to the orphan NR4A group of the nuclear receptor superfamily. Nurr1 plays key roles in the origin and maintenance of midbrain dopamine neurons, and peripheral inflammatory processes. PIAS gamma, a SUMO-E3 ligase, represses Nurr1 transcriptional activity. We report that Nurr1 is SUMOylated by SUMO-2 in the lysine 91 located in the transcriptional activation function 1 domain of Nurr1. Nurr1 SUMOylation by SUMO-2 is markedly facilitated by overexpressing wild type PIAS gamma, but not by a mutant form of PIAS gamma lacking its first LXXLL motif (PIAS gamma mut1). This PIAS gamma mut1 is also unable to interact with Nurr1 and to repress Nurr1 transcriptional activity. Interestingly, the mutant PIAS gamma C342A that lacks SUMO ligase activity is still able to significantly repress Nurr1-dependent transcriptional activity, but not to enhance Nurr1 SUMOylation. A SUMOylation-deficient Nurr1 mutant displays higher transcriptional activity than the wild type Nurr1 only in promoters harboring more than one Nurr1 response element. Furthermore, lysine 91, the major target of Nurr1 SUMOylation is contained in a canonical synergy control motif, indicating that SUMO-2 posttranslational modification of Nurr1 regulates its transcriptional synergy in complex promoters. In conclusion, PIAS gamma can exert two types of negative regulations over Nurr1. On one hand, PIAS gamma limits Nurr1 transactivation in complex promoters by SUMOylating its lysine 91. On the other hand, PIAS gamma fully represses Nurr1 transactivation through a direct interaction, independently of its E3-ligase activity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] PIASγ represses the transcriptional activation induced by the nuclear receptor Nurr1
    Galleguillos, D
    Vecchiola, A
    Fuentealba, JA
    Ojeda, V
    Alvarez, K
    Gómez, A
    Andrés, ME
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) : 2005 - 2011
  • [2] VIP is a transcriptional target of Nurr1 in dopaminergic cells
    Luo, Yu
    Henricksen, Leigh A.
    Giuliano, Rita E.
    Prifti, Llanda
    Callahan, Linda M.
    Federoff, Howard J.
    EXPERIMENTAL NEUROLOGY, 2007, 203 (01) : 221 - 232
  • [3] NMDAR MEDIATES NEURONAL SURVIVAL BY ACTIVATION OF NURR1
    Rodriguez-Alvarez, J.
    Servitja, J. M.
    Minano-Molina, A. J.
    Fado, R.
    Saura, C. A.
    Barneda-Zahonero, B.
    JOURNAL OF NEUROCHEMISTRY, 2011, 118 : 233 - 234
  • [4] PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function
    Rajan, Sreekanth
    Jang, Yongwoo
    Kim, Chun-Hyung
    Kim, Woori
    Toh, Hui Ting
    Jeon, Jeha
    Song, Bin
    Serra, Aida
    Lescar, Julien
    Yoo, Jun Yeob
    Beldar, Serap
    Ye, Hong
    Kang, Congbao
    Liu, Xue-Wei
    Feitosa, Melissa
    Kim, Yeahan
    Hwang, Dabin
    Goh, Geraldine
    Lim, Kah-Leong
    Park, Hye Min
    Lee, Choong Hwan
    Oh, Sungwhan F.
    Petsko, Gregory A.
    Yoon, Ho Sup
    Kim, Kwang-Soo
    NATURE CHEMICAL BIOLOGY, 2020, 16 (08) : 876 - +
  • [5] PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function
    Sreekanth Rajan
    Yongwoo Jang
    Chun-Hyung Kim
    Woori Kim
    Hui Ting Toh
    Jeha Jeon
    Bin Song
    Aida Serra
    Julien Lescar
    Jun Yeob Yoo
    Serap Beldar
    Hong Ye
    Congbao Kang
    Xue-Wei Liu
    Melissa Feitosa
    Yeahan Kim
    Dabin Hwang
    Geraldine Goh
    Kah-Leong Lim
    Hye Min Park
    Choong Hwan Lee
    Sungwhan F. Oh
    Gregory A. Petsko
    Ho Sup Yoon
    Kwang-Soo Kim
    Nature Chemical Biology, 2020, 16 : 876 - 886
  • [6] Defining an N-terminal activation domain of the orphan nuclear receptor Nurr1
    Nordzell, M
    Aarnisalo, P
    Benoit, G
    Castro, DS
    Perlmann, T
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 313 (01) : 205 - 211
  • [7] Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite
    Bruning, John M.
    Wang, Yan
    Oltrabella, Francesca
    Tian, Boxue
    Kholodar, Svetlana A.
    Liu, Harrison
    Bhattacharya, Paulomi
    Guo, Su
    Holton, James M.
    Fletterick, Robert J.
    Jacobson, Matthew P.
    England, Pamela M.
    CELL CHEMICAL BIOLOGY, 2019, 26 (05): : 674 - +
  • [8] Integrative analysis reveals structural basis for transcription activation of Nurr1 and Nurr1-RXRα heterodimer
    Zhao, Mohan
    Wang, Na
    Guo, Yaoting
    Li, Jingwen
    Yin, Yue
    Dong, Yan
    Zhu, Jiabin
    Peng, Chao
    Xu, Tingting
    Liu, Jinsong
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (49)
  • [9] New insights into the function of Nurr1 nuclear orphan receptor
    Malewicz, M.
    Kadkhodaei, B.
    Friling, S.
    Wu, S.
    Volakakis, N.
    Panman, L.
    Kjellander, S.
    Borgius, L.
    Metzger, D.
    Chambon, P.
    Perlmann, T.
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2006, 9 : S79 - S79
  • [10] NURR1 activation in skeletal muscle controls systemic energy homeostasis
    Amoasii, Leonela
    Sanchez-Ortiz, Efrain
    Fujikawa, Teppei
    Elmquist, Joel K.
    Bassel-Duby, Rhonda
    Olson, Eric N.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) : 11299 - 11308