Microparticle probes for laboratory plasmas

被引:17
|
作者
Wang, ZH [1 ]
Ticos, CM [1 ]
Dorf, LA [1 ]
Wurden, GA [1 ]
机构
[1] Los Alamos Natl Lab, Plasma Phys Grp P24, Los Alamos, NM 87545 USA
关键词
hypervelocity; internal magnetic field measurement; ion flow measurement; microparticle; plasma flow measurement; plasma gun;
D O I
10.1109/TPS.2006.872161
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two applications of microparticles: (micron-size particles) for laboratory plasma diagnosis are discussed. The first application is about injecting hypervelocity microparticles [(RDI) for hypervelocity dust injection] for internal magnetic field measurement in high-temperature plasmas. Since the concept of HDI has already been examined in details in our previous works, the primary focus here is to compare different schemes of microparticle acceleration. A new design of HDI based on plasma-dynamic accelerator is described to inject multiple microparticles to velocities around 10 km/s simultaneously. The other application is about using microparticles to measure plasma flow [(mPTV) for microparticle tracer velocimetry]. Directions of plasma flow at multiple locations can be measured simultaneously using mPTV because ion drag dominates over other forces inside laboratory plasmas of order 10(19) m(-3) in density and a few electron volts in temperature. In addition to complex interactions between a microparticle with plasma, the magnitude of plasma flow may not be obtained directly from the microparticle velocity because of the time it takes for each microparticle to relax to local plasma velocity. In summary, microparticles are naturally small objects in all three dimensions and can, therefore, become useful diagnostics for laboratory plasmas with minimal perturbation.
引用
收藏
页码:242 / 248
页数:7
相关论文
共 50 条
  • [1] CHARACTERIZATION OF LABORATORY PLASMAS WITH PROBES
    MANOS, DM
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1985, 3 (03): : 1059 - 1066
  • [2] The Use of Emissive Probes in Laboratory and Tokamak Plasmas
    Ionita, C.
    Gruenwald, J.
    Maszl, Ch.
    Staerz, R.
    Cercek, M.
    Fonda, B.
    Gyergyek, T.
    Filipic, G.
    Kovacic, J.
    Silva, C.
    Figueiredo, H.
    Windisch, T.
    Grulke, O.
    Klinger, T.
    Schrittwieser, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2011, 51 (2-3) : 264 - 270
  • [3] MEMS Electric-Field Probes for Laboratory Plasmas
    Stillman, Janet A.
    Chiang, Franklin C.
    Pribyl, Patrick
    Gekelman, Walter
    Nakamoto, Mio
    Judy, Jack W.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (05) : 983 - 989
  • [5] ELECTRIC PROBES IN PLASMAS
    LIPSCHULTZ, B
    HUTCHINSON, I
    LABOMBARD, B
    WAN, A
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1986, 4 (03): : 1810 - 1816
  • [6] BOUNDARIES AND PROBES IN ELECTRONEGATIVE PLASMAS
    BRAITHWAITE, NS
    ALLEN, JE
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1988, 21 (12) : 1733 - 1737
  • [7] SPECTROSCOPY OF LABORATORY PLASMAS
    BURGESS, DD
    SPACE SCIENCE REVIEWS, 1972, 13 (4-6) : 493 - +
  • [8] PLASMAS - LABORATORY SCALE
    LEHNERT, B
    REVIEWS OF GEOPHYSICS, 1964, 2 (02) : 225 - 273
  • [9] Application of triple probes to magnetized plasmas
    Laux, M
    CONTRIBUTIONS TO PLASMA PHYSICS, 2001, 41 (05) : 510 - 516
  • [10] Optical probes of ultracold neutral Plasmas
    Laha, S.
    Castro, J.
    Gao, H.
    Gupta, P.
    Sirnien, C. E.
    Killian, T. C.
    ATOMIC PROCESSES IN PLASMAS, 2007, 926 : 69 - +