PSEUDO ASYMPTOTIC SOLUTIONS OF FRACTIONAL ORDER SEMILINEAR EQUATIONS

被引:10
|
作者
Alvarez-Pardo, Edgardo [1 ]
Lizama, Carlos [2 ]
机构
[1] Univ Tecnol Bolivar, Fac Ciencias Basicas, Cartagena, Colombia
[2] Univ Santiago Chile, Fac Ciencia, Dept Matemat & Ciencia Comp, Santiago, Chile
来源
关键词
Generalized semigroup theory; two-term time fractional derivative; sectorial operators; pseudo asymptotic solutions; ALMOST-PERIODIC SOLUTIONS; DIFFERENTIAL-EQUATIONS; AUTOMORPHIC SOLUTIONS;
D O I
10.15352/bjma/1363784222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation D(t)(alpha+1)tu(t) + mu D(t)(beta)u(t) - Au(t) = f(t,u(t)), t > 0, 0 < alpha <= beta <= 1, mu >= 0, with the property that the solution can be written as u = f + h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space P-0(R+, X) := {phi epsilon BC(R+, X) : lim(T ->infinity) 1/T integral(T)(0) parallel to phi(s)parallel to ds = 0}. Moreover, this decomposition is unique.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 50 条