Analysis of charge-exchange spectroscopy data by combining genetic and Gauss-Newton algorithms

被引:2
|
作者
Ma Qian [1 ]
Zuo Haoyi [1 ]
Wei Yanling [2 ]
Liu Liang [2 ]
Chen Wenjin [2 ]
He Xiaoxue [2 ]
Luo Shirong [1 ]
机构
[1] Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China
[2] Southwestern Inst Phys, Chengdu 610041, Peoples R China
关键词
Active charge exchange spectroscopy; Diagnostic of hot fusion plasmas; GAGN; RECOMBINATION SPECTROSCOPY; ION TEMPERATURE; ELECTRIC-FIELD; TOKAMAK; PLASMA; ROTATION; MODE; TURBULENCE; EMISSION; JET;
D O I
10.1016/j.jqsrt.2015.07.014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The temperature and rotation velocity profile of ions in a tokamak are two characteristic parameters that reflect the plasma's behavior. Measurement of the two parameters relies on analyzing an active charge exchange spectroscopy diagnostic. However, a very challenging problem in such a diagnostic is the existence of interfering spectral lines, which can mislead the spectrum analysis process. This work proposes combining a genetic algorithm with the Gauss Newton method (GAGN) to address this problem. Using this GAGN algorithm, we can effectively distinguish between the useful spectrum line and the interfering spectral lines within the spectroscopic output. The accuracy and stability of this algorithm are verified using both numerical simulation and actual measurements. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 50 条
  • [1] Focusing light through scattering media by combining genetic and Gauss-Newton algorithms
    Fang, Longjie
    Zuo, Haoyi
    Xu, Yihang
    Ma, Boyi
    APPLIED PHYSICS B-LASERS AND OPTICS, 2019, 125 (06):
  • [2] INVERSION OF ACOUSTIC DATA USING A COMBINATION OF GENETIC ALGORITHMS AND THE GAUSS-NEWTON APPROACH
    GERSTOFT, P
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (04): : 2181 - 2190
  • [3] Stochastic Gauss-Newton Algorithms for Online PCA
    Zhou, Siyun
    Liu, Xin
    Xu, Liwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [4] Modified Gauss-Newton Algorithms under Noise
    Pillutla, Krishna
    Roulet, Vincent
    Kakade, Sham M.
    Harchaoui, Zaid
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 51 - 55
  • [5] On combining model reduction and Gauss-Newton algorithms for inverse partial differential equation problems
    Druskin, Vladimir
    Zaslavsky, Mikhail
    INVERSE PROBLEMS, 2007, 23 (04) : 1599 - 1610
  • [6] Convergence analysis of inexact Gauss-Newton
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 1997, 14 (04): : 1 - 7
  • [8] Extended gauss-newton and admm-gauss-newton algorithms for low-rank matrix optimization
    Tran-Dinh, Quoc
    Tran-Dinh, Quoc (quoctd@email.unc.edu), 2021, Biemdas Academic Publishers (03): : 115 - 150
  • [9] LOW COMPLEXITY DAMPED GAUSS-NEWTON ALGORITHMS FOR CANDECOMP/PARAFAC
    Anh-Huy Phan
    Tichavsky, Petr
    Cichocki, Andrzej
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (01) : 126 - 147
  • [10] On a Nonsmooth Gauss-Newton Algorithms for Solving Nonlinear Complementarity Problems
    Smietanski, Marek J.
    ALGORITHMS, 2020, 13 (08)