Multi-Agent Deep Reinforcement Learning for Sectional AGC Dispatch

被引:18
|
作者
Li, Jiawen [1 ]
Yu, Tao [1 ]
Zhu, Hanxin [1 ]
Li, Fusheng [1 ]
Lin, Dan [1 ]
Li, Zhuohuan [1 ]
机构
[1] South China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Automatic generation control; Security; Power grids; Training; Phasor measurement units; Optimization; Voltage measurement; hierarchical multi-agent deep deterministic policy gradient; sectional AGC dispatch; reinforcement learning; AUTOMATIC-GENERATION CONTROL;
D O I
10.1109/ACCESS.2020.3019929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the problem of coordinating system economy, security and control performance in secondary frequency regulation of the power grid, a sectional automatic generation control (AGC) dispatch framework is proposed. The dispatch of AGC is classified as three sections with the sectional dispatch method. Besides, a hierarchical multi-agent deep deterministic policy gradient (HMA-DDPG) algorithm is proposed for the framework in this paper. This algorithm, considering economy and security of the system in AGC dispatch, can ensure the control performance of AGC. Furthermore, through simulation, the control effect of the sectional dispatch method and several AGC dispatch methods on the Guangdong province power grid system and the IEEE 39 bus system is compared. The result shows that the best effect can be achieved with the sectional dispatch method.
引用
收藏
页码:158067 / 158081
页数:15
相关论文
共 50 条
  • [1] Multi-agent Deep Reinforcement Learning Based Optimal Dispatch of Distributed Generators
    Zhang J.
    Pu T.
    Li Y.
    Wang X.
    Zhou X.
    Dianwang Jishu/Power System Technology, 2022, 46 (09): : 3496 - 3503
  • [2] Multi-agent Deep Reinforcement Learning Algorithm for Distributed Economic Dispatch in Smart Grid
    Ding, Lifu
    Lin, Zhiyun
    Yan, Gangfeng
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3529 - 3534
  • [3] Multi-agent deep reinforcement learning with online and fair optimal dispatch of EV aggregators
    Kamrani, Arian Shah
    Dini, Anoosh
    Dagdougui, Hanane
    Sheshyekani, Keyhan
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19
  • [4] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [5] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [6] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [7] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [8] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [9] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [10] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29