Thermodynamic and Thermo-economic Analysis of Integrated Organic Rankine Cycle for Waste Heat Recovery from Vapor Compression Refrigeration Cycle

被引:30
|
作者
Asim, Muhammad [1 ]
Leung, Michael K. H. [1 ]
Shan, Zhiqiang [1 ]
Li, Yingying [1 ]
Leung, Dennis Y. C. [2 ]
Ni, Meng [3 ]
机构
[1] City Univ Hong Kong, Sch Energy & Environm, Abil R&D Res Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Bldg & Real Estates, Hong Kong, Hong Kong, Peoples R China
关键词
Air conditioning; Vapor compression cycle; Organic Rankine cycle; Waste heat recovery; Working fluid; Thermodynamic and thermo-economic analysis; WORKING FLUIDS; TEMPERATURE; OPTIMIZATION; ORC; SELECTION; ENERGY; POWER;
D O I
10.1016/j.egypro.2017.12.670
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present study, an integrated air-conditioning-organic Rankine cycle (i-AC-ORC) system which combines a vapour compression cycle and an organic Rankine cycle is proposed. An organic Rankine cycle system is applied to recover the waste heat rejected by the condenser of air-conditioning system. The selection of optimal fluid pairfor the air-conditioning subsystem and organic Rankine cycle subsystem is investigated. Based on thermodynamic (energy and exergy) and thermo-economic analysis, R600a-R123 is chosen as the fluid pair for this integrated air-conditioning-organic Rankine cycle system. The thermodynamic model has been programmed using Engineering Equation Solver (EES). The combined coefficient of performance (COP) of integrated system can be improved from 3.10 to 3.54 compared with that of the standalone air-conditioning subsystem. The organic Rankine cycle subsystem can yield 1.41 kW of net electricity with a thermal efficiency of 3.05%. The organic Rankine cycle subsystem operates with an exergy efficiency of 39.30%. In addition, energetic and exergetic performances of the integrated system are studied with variable external conditions. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:192 / 198
页数:7
相关论文
共 50 条
  • [1] Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery
    Han, Zhonghe
    Li, Peng
    Han, Xu
    Mei, Zhongkai
    Wang, Zhi
    ENERGIES, 2017, 10 (10):
  • [2] Thermo-economic evaluation of supercritical CO2 Brayton cycle integrated with absorption refrigeration system and organic Rankine cycle for waste heat recovery
    Mubashir, Wahab
    Adnan, Muhammad
    Zaman, Muhammad
    Imran, Muhammad
    Naqvi, Salman Raza
    Mehmood, Atif
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 44
  • [3] Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications
    Imran, Muhammad
    Park, Byung Sik
    Kim, Hyouck Ju
    Lee, Dong Hyun
    Usman, Muhammad
    Heo, Manki
    ENERGY CONVERSION AND MANAGEMENT, 2014, 87 : 107 - 118
  • [4] Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery
    Hajabdollahi, Zahra
    Hajabdollahi, Farzaneh
    Tehrani, Mandi
    Hajabdollahi, Hassan
    ENERGY, 2013, 63 : 142 - 151
  • [5] Thermo-economic analysis of a novel organic Rankine cycle integrated cascaded vapor compression-absorption system
    Patel, Bhavesh
    Desai, Nishith B.
    Kachhwaha, Surendra Singh
    Jain, Vaibhav
    Hadia, Nanji
    JOURNAL OF CLEANER PRODUCTION, 2017, 154 : 26 - 40
  • [6] Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle
    Mohamad Alijanpour Sheshpoli
    Seyed Soheil Mousavi Ajarostaghi
    Mojtaba Aghajani Delavar
    Journal of Thermal Analysis and Calorimetry, 2019, 135 : 1699 - 1712
  • [7] Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle
    Sheshpoli, Mohamad Alijanpour
    Ajarostaghi, Seyed Soheil Mousavi
    Delavar, Mojtaba Aghajani
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (03) : 1699 - 1712
  • [8] Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle
    Salim, Mohammad Saad
    Kim, Man-Hoe
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [9] Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine
    Zhu, Yilin
    Li, Weiyi
    Sun, Guanzhong
    Li, Haojie
    ENERGY, 2018, 158 : 343 - 356
  • [10] Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery
    Yang, Min-Hsiung
    Yeh, Rong-Hua
    ENERGY, 2015, 82 : 256 - 268