SLOPE FILTRATIONS IN FAMILIES

被引:6
|
作者
Liu, Ruochuan [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
slope filtration; phi-modules; RHAM REPRESENTATIONS;
D O I
10.1017/S1474748012000709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns arithmetic families of phi-modules over reduced affinoid spaces. For such a family, we first prove that the slope polygons are lower semicontinuous around any rigid point. We further prove that if the slope polygons are locally constant around a rigid point, then around this point, the family has a global slope filtration after base change to some extended Robba ring.
引用
收藏
页码:249 / 296
页数:48
相关论文
共 50 条
  • [1] Slope filtrations revisited
    Kedlaya, KS
    DOCUMENTA MATHEMATICA, 2005, 10 : 447 - 525
  • [2] SLOPE FILTRATIONS FOR RELATIVE FROBENIUS
    Kedlaya, Kiran S.
    ASTERISQUE, 2008, (319) : 259 - 301
  • [3] Slope filtrations of F-isocrystals and logarithmic decay
    Kramer-Miller, Joe
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (01) : 107 - 125
  • [4] Slope Filtrations Revisited (vol 10, pg 447, 2005)
    Kedlaya, Kiran S.
    DOCUMENTA MATHEMATICA, 2007, 12 : 361 - 362
  • [5] Aojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations
    Bivia-Ausina, Carles
    Encinas, Santiago
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02): : 773 - 798
  • [6] Dismissing families: A slippery slope
    Kemper, KJ
    Guth, CJ
    ARCHIVES OF PEDIATRICS & ADOLESCENT MEDICINE, 2006, 160 (04): : 452 - 452
  • [7] Łojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations
    Carles Bivià-Ausina
    Santiago Encinas
    Revista Matemática Complutense, 2013, 26 : 773 - 798
  • [8] Semistable periods of finite slope families
    Liu, Ruochuan
    ALGEBRA & NUMBER THEORY, 2015, 9 (02) : 435 - 458
  • [9] Slope inequality for families of curves over surfaces
    Zhang, Tong
    MATHEMATISCHE ANNALEN, 2018, 371 (3-4) : 1095 - 1136
  • [10] Slope inequality for families of curves over surfaces
    Tong Zhang
    Mathematische Annalen, 2018, 371 : 1095 - 1136