Congruence subgroups and the Atiyah conjecture

被引:0
|
作者
Farkas, Daniel R. [1 ]
Linnell, Peter A. [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
来源
GROUPS, RINGS AND ALGEBRAS | 2006年 / 420卷
关键词
Atiyah conjecture; congruence subgroup; zero divisor conjecture; group von Neumann algebra; pro-p group;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Q) over bar denote the algebraic closure of Q in C. Suppose G is a torsion-free group which contains a congruence subgroup as a normal subgroup of finite index and denote by U(G) the C-algebra of closed densely defined unbounded operators affiliated to the group von Neumann algebra of G. We prove that there exists a division ring D(G) such that (Q) over bar [G] subset of D(G) subset of U(G). This establishes some versions of the Atiyah conjecture for the group G.
引用
收藏
页码:89 / +
页数:3
相关论文
共 50 条