Data-driven quantification of public?private partnership experience levels under uncertainty with Bayesian hierarchical model

被引:6
|
作者
Wang, Yongqi [1 ]
Xiao, Zengqi [1 ]
Tiong, Robert L. K. [1 ]
Zhang, Limao [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Public?private partnership; Data-driven quantification; PPP experience levels; Bayesian hierarchical model; Decision making;
D O I
10.1016/j.asoc.2021.107176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Public?private partnership (PPP) is increasingly encouraged to deliver public services in developing countries. Many studies have been conducted to identify factors that affect PPP contract failure. Although a country?s PPP experience is of great importance in controlling the contract failure rate, most of the current studies are based on a qualitative perspective. This research develops a datadriven approach to quantify countries? PPP experience levels through the Bayesian hierarchical model with uncertainties considered. First, detailed data exploration and selection have been carried out to clean the data source. Second, the number of change points in the dataset is identified based on the binary segmentation method. Third, the Bayesian hierarchical model is developed to locate the positions of the change points, and different experience levels are divided based on the location of change points. Findings show that: (i) PPP experience level is widely varying depending on PPP sectors. Four experience levels are suggested for the energy sector, while five levels are found for the transportation sector, and water & sewerage sector, (ii) PPP experience level is dispersed around the world, for example, Latin America and Caribbean (LAC) and East Asia and Pacific (EAP) regions have higher PPP experience levels than other regions, (iii) a country may have various experience levels in different sectors, such as India, and (iv) the learning rate will decreases as more PPP projects are initiated. This research can contribute to (a) a novel approach that could detect the change points in PPP project experience, and (b) support investors in the decision making process, such as selecting the most appropriate investment direction, contributing to the development of PPP projects in developing countries.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Data-driven uncertainty quantification and propagation in structural dynamics through a hierarchical Bayesian framework
    Sedehi, Omid
    Papadimitriou, Costas
    Katafygiotis, Lambros S.
    PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [2] Bayesian uncertainty quantification for data-driven equation learning
    Martina-Perez, Simon
    Simpson, Matthew J.
    Baker, Ruth E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [3] Bayesian neural networks for uncertainty quantification in data-driven materials modeling
    Olivier, Audrey
    Shields, Michael D.
    Graham-Brady, Lori
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [4] Data-Driven Prediction of Contract Failure of Public-Private Partnership Projects
    Wang, Yongqi
    Shao, Zhe
    Tiong, Robert L. K.
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2021, 147 (08)
  • [5] Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs
    Junling Fang
    Bin Gong
    Jef Caers
    Engineering, 2022, (11) : 116 - 128
  • [6] Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs
    Fang, Junling
    Gong, Bin
    Caers, Jef
    ENGINEERING, 2022, 18 : 116 - 128
  • [7] Derivation and Uncertainty Quantification of a Data-Driven Subcooled Boiling Model
    Soibam, Jerol
    Rabhi, Achref
    Aslanidou, Ioanna
    Kyprianidis, Konstantinos
    Bel Fdhila, Rebei
    ENERGIES, 2020, 13 (22)
  • [8] Behavioral uncertainty quantification for data-driven control
    Padoan, Alberto
    Coulson, Jeremy
    van Waarde, Henk J.
    Lygeros, John
    Dorfler, Florian
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4726 - 4731
  • [9] FAST AND FLEXIBLE UNCERTAINTY QUANTIFICATION THROUGH A DATA-DRIVEN SURROGATE MODEL
    Dietrich, Felix
    Kuenzner, Florian
    Neckel, Tobias
    Koester, Gerta
    Bungartz, Hans-Joachim
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2018, 8 (02) : 175 - 192
  • [10] Bayesian Nonlocal Operator Regression: A Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification
    Fan, Yiming
    D'Elia, Marta
    Yu, Yue
    Najm, Habib N.
    Silling, Stewart
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (08)