Smart sensors for monitoring crack growth under fatigue loading conditions

被引:20
|
作者
Giurgiutiu, V [1 ]
Xu, B [1 ]
Chao, Y [1 ]
Liu, S [1 ]
Gaddam, R [1 ]
机构
[1] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA
关键词
Arcan specimen; crack growth; fatigue loading; piezoelectric wafer active sensor; electromechanical impedance; pitch-catch; Lamb wave;
D O I
10.12989/sss.2006.2.2.101
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural health monitoring results obtained with the electro-mechanical (E/M) impedance technique and Lamb wave transmission methods during fatigue crack propagation of an Arcan specimen instrumented with piezoelectric wafer active sensors (PWAS) are presented. The specimen was subjected in mixed-mode fatigue loading and a crack was propagated in stages. At each stage, an image of the crack and the location of the crack tip were recorded and the PWAS readings were taken. Hence, the crack-growth in the specimen could be correlated with the PWAS readings. The E/M impedance signature was recorded in the 100 - 500 kHz frequency range. The Lamb-wave transmission method used the pitch-catch approach with a 3-count sine tone burst of 474 kHz transmitted and received between various PWAS pairs. Fatigue loading was applied to initiate and propagate the crack damage of controlled magnitude. As damage progressed, the E/M impedance signatures and the waveforms received by receivers were recorded at predetermined intervals and compared. Data analysis indicated that both the E/M impedance signatures and the Lamb-wave transmission signatures are modified by the crack progression. Damage index values were observed to increase as the crack damage increases. These experiments demonstrated that the use of PWAS in conjunction with the E/M impedance and the Lamb-wave transmission is a potentially powerful tool for crack damage detection and monitoring in structural elements.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
  • [1] Embedded smart sensors for monitoring crack presence and growth under cyclic fatigue loading
    Giurgiutiu, V
    Chao, Y
    Xu, BL
    Gaddam, R
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING: NEW FRONTIER AND RESEARCH TRANSFORMATION, 2004, : 819 - 824
  • [2] Fatigue crack growth under ultrasonic fatigue loading
    Ni, JG
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1997, 20 (01) : 23 - 28
  • [3] Fatigue crack growth monitoring by optical fiber sensors in smart composite patch repairs
    Seo, Dae-Cheol
    Kwon, Il-Bum
    Lee, Jung-Ju
    ADVANCED NONDESTRUCTUVE EVALUATION I, PTS 1 AND 2, PROCEEDINGS, 2006, 321-323 : 286 - 289
  • [4] Fatigue crack growth under compressive loading
    Kasaba, K
    Sano, T
    Kudo, S
    Shoji, T
    Katagiri, K
    Sato, T
    JOURNAL OF NUCLEAR MATERIALS, 1998, 258 : 2059 - 2063
  • [5] Fatigue crack growth under random loading
    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China
    不详
    Chuan Bo Li Xue, 2006, 6 (94-101):
  • [6] FATIGUE CRACK GROWTH UNDER BIAXIAL LOADING
    OGURA, K
    OHJI, K
    OHKUBO, Y
    INTERNATIONAL JOURNAL OF FRACTURE, 1974, 10 (04) : 609 - 610
  • [7] Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions
    S. Mikheevskiy
    G. Glinka
    E. Lee
    Metallurgical and Materials Transactions A, 2013, 44 : 1301 - 1310
  • [8] Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions
    Mikheevskiy, S.
    Glinka, G.
    Lee, E.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (03): : 1301 - 1310
  • [9] Fatigue crack growth prediction model under variable amplitude loading conditions
    Li, Menghan
    Liu, Xin
    Li, Zhenguo
    Zhang, Yingbo
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2021, 30 (09) : 1315 - 1326
  • [10] A fatigue crack growth model for spot welds under cyclic loading conditions
    Lin, S. -H.
    Pan, J.
    Wung, P.
    Chiang, J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (07) : 792 - 803