BOUNDEDNESS AND BLOWUP SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS WITH LOWER ORDER TERMS

被引:2
|
作者
Chen, Shaohua [1 ]
机构
[1] Cape Breton Univ, Dept Math Phys & Geol, Sydney, NS B1P 6L2, Canada
关键词
Bounded solutions; blowup solutions; quasilinear parabolic systems; lower order terms; GLOBAL EXISTENCE; DEGENERATE; NONEXISTENCE; EQUATIONS;
D O I
10.3934/cpaa.2009.8.587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the bounded and blowup solutions of the quasilinear parabolic system u(t) = u(p) (Delta u + av) + f(u, v, Du, x) and v(t) = v(q) (Delta v + bu) + g(u, v, Dv, x) with homogeneous Dirichlet boundary condition. Under suitable conditions on the lower order terms f and g, it is shown that all solutions are bounded if (1 + c(1)) root ab < lambda(1) and blow up in a finite time if (1 + c(1)) root ab > lambda(1), where lambda(1) is the first eigenvalue of -Delta in Omega with Dirichlet data and c(1) > -1 related to f and g.
引用
收藏
页码:587 / 600
页数:14
相关论文
共 50 条