THE DEFINABLE (P, Q)-THEOREM FOR DISTAL THEORIES

被引:4
|
作者
Boxall, Gareth [1 ]
Kestner, Charlotte [2 ]
机构
[1] Stellenbosch Univ, Dept Math Sci, ZA-7600 Stellenbosch, South Africa
[2] Univ Cent Lancashire, Dept Phys Sci & Comp, Jeremiah Horrocks Inst Math Phys & Astron, Fylde Rd, Preston PR1 2HE, Lancs, England
关键词
definable; (p; q); distality; forking; NIP; FORKING;
D O I
10.1017/jsl.2016.72
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Answering a special case of a question of Chernikov and Simon, we show that any nondividing formula over a model M in a distal NIP theory is a member of a consistent definable family, definable over M.
引用
收藏
页码:123 / 127
页数:5
相关论文
共 50 条
  • [1] A definable (p, q)-theorem for NIP theories
    Kaplan, Itay
    ADVANCES IN MATHEMATICS, 2024, 436
  • [2] On minimal flows and definable amenability in some distal NIP theories
    Yao, Ningyuan
    Zhang, Zhentao
    ANNALS OF PURE AND APPLIED LOGIC, 2023, 174 (07)
  • [3] Godel's second incompleteness theorem for Σn-definable theories
    Chao, Conden
    Seraji, Payam
    LOGIC JOURNAL OF THE IGPL, 2018, 26 (02) : 255 - 257
  • [4] Godel-Rosser's Incompleteness Theorem, generalized and optimized for definable theories
    Salehi, Saeed
    Seraji, Payam
    JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (05) : 1391 - 1397
  • [5] Definable Davies' theorem
    Toernquist, Asger
    Weiss, William
    FUNDAMENTA MATHEMATICAE, 2009, 205 (01) : 77 - 89
  • [6] ALGEBRAS FOR DEFINABLE FAMILIES OF THEORIES
    Markhabatov, N. D.
    Sudoplatov, S., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 600 - 608
  • [7] From a (p, 2)-Theorem to a Tight (p, q)-Theorem
    Keller, Chaya
    Smorodinsky, Shakhar
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (04) : 821 - 847
  • [8] From a (p, 2)-Theorem to a Tight (p, q)-Theorem
    Chaya Keller
    Shakhar Smorodinsky
    Discrete & Computational Geometry, 2020, 63 : 821 - 847
  • [9] Stably definable classes of theories
    Palyutin E.A.
    Algebra and Logic, 2005, 44 (5) : 326 - 335
  • [10] Definability and definable groups in simple theories
    Pillay, A
    JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (03) : 788 - 796