Symmetry and symmetry breaking for minimizers in the trace inequality

被引:0
|
作者
Dozo, EJL
Torné, O
机构
[1] Univ Libre Bruxelles, B-1050 Brussels, Belgium
[2] Univ Buenos Aires, CONICET, Buenos Aires, DF, Argentina
关键词
symmetry breaking; Sobolev trace inequality; nonlinear boundary condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C vertical bar vertical bar u vertical bar vertical bar(p)(Lq(partial derivative BNp)) <= vertical bar vertical bar u vertical bar vertical bar(p)(W1,p (B rho)) in the ball B-rho of radius rho. When p is fixed, minimizers in this problem can be radial or non-radial depending on the parameters q and p. We prove that there is a global radial function u(0) > 0, with u(0) independent of q, such that any radial minimizer is a multiple of the restriction of uo to B-rho. Next, we prove that if either q or rho is sufficiently large, then the minimizers are non-radial. In the case when p = 2, we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and rho for which radial symmetry breaking occurs.
引用
收藏
页码:727 / 746
页数:20
相关论文
共 50 条
  • [1] On the Symmetry of Minimizers
    Maris, Mihai
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (02) : 311 - 330
  • [2] On the Symmetry of Minimizers
    Mihai Mariş
    Archive for Rational Mechanics and Analysis, 2009, 192 : 311 - 330
  • [3] SYMMETRY-BREAKING IN A GENERALIZED WIRTINGER INEQUALITY
    Ghisi, Marina
    Gobbino, Massimo
    Rovellini, Giulio
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1381 - 1394
  • [4] Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenb erg inequality
    Ao, Weiwei
    DelaTorre, Azahara
    del Mar Gonzalez, Maria
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (11)
  • [5] SYMMETRY BREAKING IN A CONSTRAINED CHEEGER TYPE ISOPERIMETRIC INEQUALITY
    Brandolini, Barbara
    Della Pietra, Francesco
    Nitsch, Carlo
    Trombetti, Cristina
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (02) : 359 - 371
  • [6] Patterns, symmetry, and symmetry breaking
    Zhao, Liping
    COMMUNICATIONS OF THE ACM, 2008, 51 (03) : 41 - 46
  • [7] Symmetry, Symmetry Breaking and Topology
    Sen, Siddhartha
    SYMMETRY-BASEL, 2010, 2 (03): : 1401 - 1422
  • [8] Symmetry and symmetry breaking in nature
    Genz, H
    INTERDISCIPLINARY SCIENCE REVIEWS, 1999, 24 (02) : 129 - 138
  • [9] SYMMETRY BREAKING IN REPRESENTATIONS OF RELATIVISTIC SYMMETRY
    BOHM, A
    PHYSICAL REVIEW D, 1971, 3 (02): : 377 - &
  • [10] Symmetry breaking
    Walsh, Toby
    AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4304 : 7 - +