Quantitative Tomography for Continuous Variable Quantum Systems

被引:24
|
作者
Landon-Cardinal, Olivier [1 ]
Govia, Luke C. G. [1 ,2 ]
Clerk, Aashish A. [1 ,2 ]
机构
[1] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[2] Univ Chicago, Inst Mol Engn, 5640 S Ellis Ave, Chicago, IL 60637 USA
基金
加拿大自然科学与工程研究理事会;
关键词
BIVARIATE LAGRANGE INTERPOLATION; PADUA POINTS; STATE; INFORMATION; GENERATION;
D O I
10.1103/PhysRevLett.120.090501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state- independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Selective quantum state tomography for continuous-variable systems
    Feldman, Virginia
    Bendersky, Ariel
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [2] Quantum communications in continuous variable systems
    Notarnicola, Michele N.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2025,
  • [3] Selective continuous-variable quantum process tomography
    Feldman, Virginia
    Bendersky, Ariel
    Physical Review A, 2025, 111 (04)
  • [4] Continuous-variable quantum state tomography of photoelectrons
    Laurell, H.
    Finkelstein-Shapiro, D.
    Dittel, C.
    Guo, C.
    Demjaha, R.
    Ammitzboll, M.
    Weissenbilder, R.
    Neoricic, L.
    Luo, S.
    Gisselbrecht, M.
    Arnold, C. L.
    Buchleitner, A.
    Pullerits, T.
    L'Huillier, A.
    Busto, D.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [5] Quantum correlations relativity for continuous variable systems
    Dugi M.
    Arsenijevi M.
    Jekni-Dugi J.
    Science China(Physics,Mechanics & Astronomy), 2013, Mechanics & Astronomy)2013 (04) : 732 - 736
  • [6] Quantum correlations relativity for continuous variable systems
    M. Dugić
    M. Arsenijević
    J. Jeknić-Dugić
    Science China Physics, Mechanics and Astronomy, 2013, 56 : 732 - 736
  • [7] Holonomic Quantum Control with Continuous Variable Systems
    Albert, Victor V.
    Shu, Chi
    Krastanov, Stefan
    Shen, Chao
    Liu, Ren-Bao
    Yang, Zhen-Biao
    Schoelkopf, Robert J.
    Mirrahimi, Mazyar
    Devoret, Michel H.
    Jiang, Liang
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [8] Measures of Quantum Synchronization in Continuous Variable Systems
    Mari, A.
    Farace, A.
    Didier, N.
    Giovannetti, V.
    Fazio, R.
    PHYSICAL REVIEW LETTERS, 2013, 111 (10)
  • [9] Quantum correlations relativity for continuous variable systems
    Dugic, M.
    Arsenijevic, M.
    Jeknic-Dugic, J.
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (04) : 732 - 736
  • [10] Gaussian description of continuous measurements on continuous variable quantum systems
    Madsen, L. B.
    Molmer, K.
    QUANTUM INFORMATION WITH CONTINOUS VARIABLES OF ATOMS AND LIGHT, 2007, : 435 - +