On the regularity of the Lp Minkowski problem

被引:33
|
作者
Huang, Yong [1 ]
Lu, QiuPing [2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Ctr Modelamiento Matemat, Santiago, Chile
关键词
L-p-Minkowski problems; Monge-Ampere equation; Regularity; EVOLVING PLANE-CURVES; FIREY THEORY; AFFINE; CURVATURE; SHAPES;
D O I
10.1016/j.aam.2012.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The L-p Minkowski problem is equivalent to solve the Monge-Ampere equation det(u(ij) + u delta(ij)) = u(p-1) f, on S-n. Since it is degenerate for 1 < p < n + 1, the equation has no smooth solution even when the prescribed positive function f is smooth. In this paper, the C-infinity regularity for the solution is obtained for 2 < p < n + 1 by adding a gradient condition on f. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 280
页数:13
相关论文
共 50 条
  • [1] The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry
    Chou, Kai-Seng
    Wang, Xu-Jia
    ADVANCES IN MATHEMATICS, 2006, 205 (01) : 33 - 83
  • [2] On the Lp-Minkowski problem
    Lutwak, E
    Yang, D
    Zhang, GY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (11) : 4359 - 4370
  • [3] The Lp Minkowski problem for torsion
    Chen, Zhengmao
    Dai, Qiuyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [4] On the Lp dual Minkowski problem
    Huang, Yong
    Zhao, Yiming
    ADVANCES IN MATHEMATICS, 2018, 332 : 57 - 84
  • [5] The Lp chord Minkowski problem
    Xi, Dongmeng
    Yang, Deane
    Zhang, Gaoyong
    Zhao, Yiming
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [6] On the Lp Minkowski Problem for Polytopes
    Daniel Hug
    Erwin Lutwak
    Deane Yang
    Gaoyong Zhang
    Discrete & Computational Geometry, 2005, 33 : 699 - 715
  • [7] On the Lp Minkowski problem for polytopes
    Hug, D
    Lutwak, E
    Yang, D
    Zhang, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (04) : 699 - 715
  • [8] C1,1 regularity for solutions to the degenerate Lp Dual Minkowski problem
    Chen, Li
    Tu, Qiang
    Wu, Di
    Xiang, Ni
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [9] On the Lp Gaussian Minkowski problem
    Feng, Yibin
    Hu, Shengnan
    Xu, Lei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 : 350 - 390
  • [10] ON THE REGULARITY OF SOLUTIONS TO A GENERALIZATION OF THE MINKOWSKI PROBLEM
    LUTWAK, E
    OLIKER, V
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1995, 41 (01) : 227 - 246