Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors

被引:15
|
作者
Choi, Hee Min [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Asymmetric Laplace distribution; Data augmentation algorithm; Eigenvalues; Geometric convergence rate; Markov chain; Markov operator; Monte Carlo; Sandwich algorithm; Trace-class operator; CHAIN MONTE-CARLO; QUANTILE REGRESSION; DATA AUGMENTATION; GIBBS SAMPLER; MODELS;
D O I
10.1016/j.jmva.2013.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let pi denote the intractable posterior density that results when the standard default prior is placed on the parameters in a linear regression model with iid Laplace errors. We analyze the Markov chains underlying two different Markov chain Monte Carlo algorithms for exploring pi. In particular, it is shown that the Markov operators associated with the data augmentation (DA) algorithm and a sandwich variant are both trace-class. Consequently, both Markov chains are geometrically ergodic. It is also established that for each i is an element of (1, 2, 3, ...}, the ith largest eigenvalue of the sandwich operator is less than or equal to the corresponding eigenvalue of the DA operator. It follows that the sandwich algorithm converges at least as fast as the DA algorithm. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [1] Convergence Analysis of MCMC Algorithms for Bayesian Multivariate Linear Regression with Non-Gaussian Errors
    Hobert, James P.
    Jung, Yeun Ji
    Khare, Kshitij
    Qin, Qian
    SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (03) : 513 - 533
  • [2] Spectral properties of MCMC algorithms for Bayesian linear regression with generalized hyperbolic errors
    Jung, Yeun Ji
    Hobert, James P.
    STATISTICS & PROBABILITY LETTERS, 2014, 95 : 92 - 100
  • [3] Bayesian analysis of a linear mixed model with AR(p) errors via MCMC
    Alkhamisi, MA
    Shukur, G
    JOURNAL OF APPLIED STATISTICS, 2005, 32 (07) : 741 - 755
  • [4] Differentially Private Distributed Bayesian Linear Regression with MCMC
    Alparslan, Baris
    Yildirim, Sinan
    Birbil, S. Ilker
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202 : 627 - 641
  • [5] Convergence rates for MCMC algorithms for a robust Bayesian binary regression model
    Roy, Vivekananda
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 2463 - 2485
  • [6] Semiparametric Bayesian analysis of censored linear regression with errors-in-covariates
    Sinha, Samiran
    Wang, Suojin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) : 1389 - 1415
  • [7] Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data
    Garay, Aldo M.
    Medina, Francyelle L.
    de Freitas, Suelem Torres
    Lachos, Victor H.
    STATISTICAL PAPERS, 2024, 65 (09) : 5649 - 5690
  • [8] Horseshoe Prior for Bayesian Linear Regression with Hyperbolic Errors
    De, Shamriddha
    Ghosh, Joyee
    STATISTICS AND APPLICATIONS, 2024, 22 (03): : 199 - 209
  • [9] Robust errors-in-variables linear regression via Laplace distribution
    Shi, Jianhong
    Chen, Kun
    Song, Weixing
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 113 - 120
  • [10] A note on the convergence rate of MCMC for robust Bayesian multivariate linear regression with proper priors
    Backlund, Grant
    Hobert, James P.
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2020, 2 (03)