Collapse of thermosensitive polyelectrolyte semi-interpenetrating networks

被引:23
|
作者
Kozhunova, Elena Yu. [1 ]
Makhaeva, Elena E. [1 ]
Khokhlov, Alexey R. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Dept Phys Polymers & Crystals, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Thermosensitive; Hydrogel; Polyelectrolyte; AQUEOUS POLY(N-ISOPROPYLACRYLAMIDE) SOLUTIONS; INTERPENETRATING POLYMER NETWORKS; PHASE-TRANSITION TEMPERATURE; POLY(ACRYLIC ACID) CHAINS; POLY(N-VINYLCAPROLACTAM-CO-METHACRYLIC ACID); COOPERATIVE HYDRATION; N-ISOPROPYLACRYLAMIDE; MICROGEL PARTICLES; LCST BEHAVIOR; HYDROGELS;
D O I
10.1016/j.polymer.2012.04.001
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Thermosensitive ionic semi-interpenetrating polymer networks (semi-IPNs) based on poly(N-isopropylacrylamide) (PNIPAAm) and poly(styrene sulfonic acid sodium salt) (PSS) were synthesized, and their properties, such as conversion, swelling ratio and swelling/shrinking kinetics, were studied at different PSS fractions and molecular weight (MW). It is shown that studied semi-IPN hydrogels undergo shrinking under temperature increase. Swelling behavior and volume transition temperature of the semi-IPNs is controlled by the polyelectrolyte fraction. The increase of PSS MW allows obtaining of stable semi-IPN hydrogels. A novel phenomenon of collapse irreversibility in PNIPAAm-PSS semi-IPNs is reported. In contrast to PNIPAAm hydrogels, semi-IPNs of PNIPAAm with immobilized polyelectrolyte do not restore their volume when they reswell after shrinking. The magnitude of this effect is connected to the charged polyelectrolyte fraction. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2379 / 2384
页数:6
相关论文
共 50 条
  • [1] Inclusion of PLLA nanoparticles in thermosensitive semi-interpenetrating polymer networks
    Rescignano, Nicoletta
    Hernandez, Rebeca
    Armentano, Ilaria
    Puglia, Debora
    Mijangos, Carmen
    Maria Kenny, Jose
    POLYMER DEGRADATION AND STABILITY, 2014, 108 : 280 - 287
  • [2] Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control
    Reddy, T. Thimma
    Kano, Arihiro
    Maruyama, Atsushi
    Hadano, Michiko
    Takahara, Atsushi
    BIOMACROMOLECULES, 2008, 9 (04) : 1313 - 1321
  • [3] Functional Semi-Interpenetrating Polymer Networks
    Wang, Minghao
    Jiang, Jiawei
    Liang, Shuofeng
    Sui, Cong
    Wu, Si
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024,
  • [4] Anharmonicity and fragility in semi-interpenetrating polymer networks
    Carini, G
    D'Angelo, G
    Tripodo, G
    Bartolatta, A
    Di Marco, G
    Privalko, VP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (15) : 3559 - 3568
  • [5] Conducting polyaniline confined in semi-interpenetrating networks
    Wang, YJ
    Wang, XH
    Zhao, XJ
    Li, J
    Mo, ZS
    Jing, XB
    Wang, FS
    MACROMOLECULAR RAPID COMMUNICATIONS, 2002, 23 (02) : 118 - 121
  • [6] Polyhydroxyacrylate-polyurethane semi-interpenetrating polymer networks
    Rosu, D
    Ciobanu, C
    Cascaval, CN
    EUROPEAN POLYMER JOURNAL, 2001, 37 (03) : 587 - 595
  • [7] Semi-interpenetrating Networks in Blends of Epoxidized Natural Rubbers
    Imbernon, Lucie
    Pire, Myriam
    Oikonomou, Evdokia K.
    Norvez, Sophie
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2013, 214 (07) : 806 - 811
  • [8] A novel semi-interpenetrating networks system as an absorbent material
    Yuk, SH
    Cho, SH
    Shin, BC
    Lee, HB
    EUROPEAN POLYMER JOURNAL, 1996, 32 (01) : 101 - 104
  • [9] P and n dopable semi-interpenetrating polymer networks
    T.-X. Lav
    F. Tran-Van
    J.-P. Bonnet
    C. Chevrot
    S. Peralta
    D. Teyssié
    J. V. Grazulevicius
    Journal of Solid State Electrochemistry, 2007, 11 : 859 - 866
  • [10] Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
    Fong, Kara D.
    Wang, Tiesheng
    Kim, Hyun-Kyung
    Kumar, R. Vasant
    Smoukov, Stoyan
    ACS ENERGY LETTERS, 2017, 2 (09): : 2014 - 2020