On Astala's theorem for martingales and Fourier multipliers

被引:5
|
作者
Banuelos, Rodrigo [1 ]
Osekowski, Adam [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
基金
美国国家科学基金会;
关键词
Fourier multipliers; Beurling-Ahlfors operator; Martingale inequalities; CONVEX INTEGRATION; AREA DISTORTION; L-P; COUNTEREXAMPLES; REGULARITY; SUBORDINATION; INEQUALITIES; ZEROS;
D O I
10.1016/j.aim.2015.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit a large class of symbols m on R-d, d >= 2, for which the corresponding Fourier multipliers T-m satisfy the following inequality. If D, E are measurable subsets of R-d with E subset of D and vertical bar D vertical bar < infinity, then integral(D\E) vertical bar T-m chi E(x)vertical bar dx <= { vertical bar E vertical bar + vertical bar E vertical bar ln (vertical bar D vertical bar/2 vertical bar E vertical bar), if vertical bar E vertical bar < vertical bar D vertical bar/2, vertical bar D\E vertical bar+1/2 vertical bar D\E vertical bar ln (vertical bar E vertical bar/vertical bar D\E vertical bar), if vertical bar E vertical bar >= vertical bar D vertical bar/2. Here vertical bar center dot vertical bar denotes the Lebesgue measure on R-d. When d = 2, these multipliers include the real and imaginary parts of the Beurling-Ahlfors operator B and hence the inequality is also valid for B with the right-hand side multiplied by root 2. The inequality is sharp for the real and imaginary parts of B. This work is motivated by K. Astala's celebrated results on the Gehring-Reich conjecture concerning the distortion of area by quasiconformal maps. The proof rests on probabilistic methods and exploits a family of appropriate novel sharp inequalities for differentially subordinate martingales. These martingale bounds are of interest on their own right. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
  • [1] MARTINGALES AND SHARP BOUNDS FOR FOURIER MULTIPLIERS
    Banuelos, Rodrigo
    Osekowski, Adam
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 251 - 263
  • [2] Marcinkiewicz's theorem on operator multipliers of Fourier series
    Dostanic, MR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 391 - 396
  • [3] Stability in Burkholder's differentially subordinate martingales inequalities and applications to Fourier multipliers
    Banuelos, Rodrigo
    Osekowski, Adam
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 1 - 44
  • [4] PARABOLIC MARTINGALES AND NON-SYMMETRIC FOURIER MULTIPLIERS
    Bogdan, Krzysztof
    Wojciechowski, Lukasz
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2012, 32 (02): : 241 - 253
  • [5] ON A GENERALIZATION OF THE LIZORKIN THEOREM ON FOURIER MULTIPLIERS
    Sarybekova, L. O.
    Tararykova, T. V.
    Tleukhanova, N. T.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 613 - 624
  • [6] On an analogue of a theorem by Astala and Tylli
    Karlovich, Alexei
    Shargorodsky, Eugene
    ARCHIV DER MATHEMATIK, 2022, 118 (01) : 73 - 77
  • [7] On an analogue of a theorem by Astala and Tylli
    Alexei Karlovich
    Eugene Shargorodsky
    Archiv der Mathematik, 2022, 118 : 73 - 77
  • [8] The exponent of convergence and a theorem of Astala
    Bonfert-Taylor, P
    Taylor, EC
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (03) : 607 - 623
  • [10] Mikhlin's theorem for operator-valued Fourier multipliers in n variables
    Haller, R
    Heck, H
    Noll, A
    MATHEMATISCHE NACHRICHTEN, 2002, 244 : 110 - 130