When is the self-intersection of a subvariety a fibration?

被引:23
|
作者
Arinkin, Dima [2 ]
Caldararu, Andrei [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
HKR isomorphism; Derived intersection theory; Derived algebraic geometry; HOCHSCHILD; DECOMPOSITION;
D O I
10.1016/j.aim.2012.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a necessary and sufficient condition for the derived self-intersection of a smooth subscheme inside a smooth scheme to be a fibration over the subscheme. As a consequence we deduce a generalized HKR isomorphism. We also investigate the relationship of our result to path spaces in homotopy theory, Buchweitz-Flenner formality in algebraic geometry, and draw parallels with similar results in Lie theory and symplectic geometry. (C) 2012 Published by Elsevier Inc.
引用
收藏
页码:815 / 842
页数:28
相关论文
共 50 条
  • [1] ON SELF-INTERSECTION INVARIANTS
    Grant, Mark
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) : 259 - 273
  • [2] Self-intersection in elasticity
    Aguiar, A
    Fosdick, R
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (28-29) : 4797 - 4823
  • [3] Surface self-intersection
    Ho, CC
    Cohen, E
    MATHEMATICAL METHODS FOR CURVES AND SURFACES: OSLO 2000, 2001, : 183 - 194
  • [4] Self-intersection of optimal geodesics
    Cavalletti, Fabio
    Huesmann, Martin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 653 - 656
  • [5] SELF-INTERSECTION OF COSMIC STRINGS
    KIBBLE, TWB
    TUROK, N
    PHYSICS LETTERS B, 1982, 116 (2-3) : 141 - 143
  • [6] Local Times of Self-Intersection
    A. A. Dorogovtsev
    O. L. Izyumtseva
    Ukrainian Mathematical Journal, 2016, 68 : 325 - 379
  • [7] SELF-INTERSECTION OF AN OFFSET SURFACE
    AOMURA, S
    UEHARA, T
    COMPUTER-AIDED DESIGN, 1990, 22 (07) : 417 - 422
  • [8] LOCAL TIMES OF SELF-INTERSECTION
    Dorogovtsev, A. A.
    Izyumtseva, O. L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (03) : 325 - 379
  • [9] Curves of zero self-intersection and foliations
    Paulo Sad
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 333 - 345
  • [10] Intersection and self-intersection of surfaces by means of Bezoutian matrices
    Buse, L.
    Elkadi, M.
    Galligo, A.
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (02) : 53 - 68