TRIANGULATION BASED ISOGEOMETRIC ANALYSIS OF THE CAHN-HILLIARD PHASE-FIELD MODEL

被引:0
|
作者
Zhang, Ruochun [1 ]
Qian, Xiaoping [1 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
NONUNIFORM SYSTEM; FREE-ENERGY; EQUATION; ELEMENTS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the triangulation based isogeometric analysis of the Cahn-Hilliard phase-field model. We validate our method by convergence analysis, show detailed system evolution from a randomly perturbed initial condition and then discuss related isoperimetric problems. Lastly an example highlighting its efficacy in complex geometry is provided. Triangulation based isogeometric analysis shows time step stability and complex geometry adaptability in our experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Triangulation-based isogeometric analysis of the Cahn-Hilliard phase-field model
    Zhang, Ruochun
    Qian, Xiaoping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 357
  • [2] Isogeometric analysis of the Cahn-Hilliard phase-field model
    Gomez, Hector
    Calo, Victor M.
    Bazilevs, Yuri
    Hughes, Thomas J. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (49-50) : 4333 - 4352
  • [3] Isogeometric Analysis of Phase-Field Models: Application to the Cahn-Hilliard Equation
    Gomez, H.
    Calo, V. M.
    Hughes, T. J. R.
    ECCOMAS MULTIDISCIPLINARY JUBILEE SYMPOSIUM: NEW COMPUTATIONAL CHALLENGES IN MATERIALS, STRUCTURES AND FLUIDS, 2009, 14 : 1 - +
  • [4] Natural element analysis of the Cahn-Hilliard phase-field model
    Rajagopal, Amirtham
    Fischer, Paul
    Kuhl, Ellen
    Steinmann, Paul
    COMPUTATIONAL MECHANICS, 2010, 46 (03) : 471 - 493
  • [5] The Cahn-Hilliard phase-field model for topology optimization of solids
    Wang, M. Y.
    Zhou, S.
    IUTAM SYMPOSIUM ON SIZE EFFECTS ON MATERIAL AND STRUCTURAL BEHAVIOR AT MICRON- AND NANO-SCALES, 2006, 142 : 133 - +
  • [6] Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
    Balakrishna, Ananya Renuka
    Carter, W. Craig
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [7] The Cahn-Hilliard equation as limit of a conserved phase-field system
    Bonfoh, Ahmed
    Enyi, Cyril D.
    ASYMPTOTIC ANALYSIS, 2017, 101 (03) : 97 - 148
  • [8] Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids
    Toth, Gyula I.
    Zarifi, Mojdeh
    Kvamme, Bjorn
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [9] Cahn-Hilliard equation as degenerate limit of the phase-field equations
    1600, Brown Univ, Providence, RI, USA (53):
  • [10] Natural element analysis of the Cahn–Hilliard phase-field model
    Amirtham Rajagopal
    Paul Fischer
    Ellen Kuhl
    Paul Steinmann
    Computational Mechanics, 2010, 46 : 471 - 493