Reformulating multidimensional population balances for predicting crystal size and shape

被引:7
|
作者
Kuvadia, Zubin B. [1 ]
Doherty, Michael F. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
crystal growth (industrial crystallization); crystallization; mathematical modeling; L-GLUTAMIC ACID; SELF-GENERATED OSCILLATIONS; CRYSTALLIZATION PROCESSES; GROWTH-KINETICS; MODEL IDENTIFICATION; ORGANIC-MOLECULES; FORCE-FIELD; SIMULATION; DISTRIBUTIONS; DISSOLUTION;
D O I
10.1002/aic.14167
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
There is a growing interest in predicting and controlling the size and shape of crystalline particles. Multidimensional population balances have been developed to accomplish this task but they suffer from the drawback of needing rate laws for the absolute growth rate for every family of faces that may appear on the crystal surface. Such growth rates are known for only a handful of crystalline materials and prospects are bleak for extending the library of growth rate data. This raises the question of where the surface growth rates for all the families of faces will come from to drive multidimensional population balance engineering technology. One answer is from first principles. We reformulate multidimensional population balances in terms of relative growth rates and show how to create first principles mechanistic models to calculate these quantities for real molecular crystals as a function of supersaturation. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3468-3474, 2013
引用
收藏
页码:3468 / 3474
页数:7
相关论文
共 50 条
  • [1] A Comprehensive Approach to Predicting Crystal Morphology Distributions with Population Balances
    Singh, Meenesh R.
    Ramkrishna, Doraiswami
    CRYSTAL GROWTH & DESIGN, 2013, 13 (04) : 1397 - 1411
  • [2] A multidimensional stability model for predicting shallow landslide size and shape across landscapes
    Milledge, David G.
    Bellugi, Dino
    McKean, Jim A.
    Densmore, Alexander L.
    Dietrich, William E.
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2014, 119 (11) : 2481 - 2504
  • [3] Multidimensional Size Functions for Shape Comparison
    S. Biasotti
    A. Cerri
    P. Frosini
    D. Giorgi
    C. Landi
    Journal of Mathematical Imaging and Vision, 2008, 32
  • [4] Multidimensional size functions for shape comparison
    Biasotti, S.
    Cerri, A.
    Frosini, P.
    Giorgi, D.
    Landi, C.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 32 (02) : 161 - 179
  • [5] Multidimensional inequality with variable population size
    Savaglio, E
    ECONOMIC THEORY, 2006, 28 (01) : 85 - 94
  • [6] Multidimensional inequality with variable population size
    Ernesto Savaglio
    Economic Theory, 2006, 28 : 85 - 94
  • [7] Predicting solvent effects on crystal shape
    不详
    CHEMICAL ENGINEERING PROGRESS, 2000, 96 (07) : 10 - 10
  • [8] Fast High-Resolution Method for Solving Multidimensional Population Balances in Crystallization
    Majumder, Aniruddha
    Kariwala, Vinay
    Ansumali, Santosh
    Rajendran, Arvind
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (08) : 3862 - 3872
  • [9] Adaptive high-resolution schemes for multidimensional population balances in crystallization processes
    Qamar, S.
    Ashfaq, A.
    Warnecke, G.
    Angelov, I.
    Elsner, M. P.
    Seidel-Morgenstern, A.
    COMPUTERS & CHEMICAL ENGINEERING, 2007, 31 (10) : 1296 - 1311
  • [10] Convex optimization for shape manipulation of multidimensional crystal particles
    Bajcinca, Naim
    Perl, Ricardo
    Sundmacher, Kai
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 855 - 859