HAUSDORFF DIMENSION OF THE SET APPROXIMATED BY IRRATIONAL ROTATIONS

被引:5
|
作者
Kim, Dong Han [1 ]
Rams, Michal [2 ]
Wang, Baowei [3 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, Seoul 04620, South Korea
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
INHOMOGENEOUS DIOPHANTINE APPROXIMATION;
D O I
10.1112/S0025579317000523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let theta be an irrational number and phi : N -> R+ be a monotone decreasing function tending to zero. Let E-phi(theta) = {y is an element of R : parallel to n theta - y parallel to < phi(n), for infinitely many n is an element of N}, i.e. the et of points which are approximated by the irrational rotation with respect to the error function phi(n). In this article, we give a complete description of the Hausdorff dimension of E-phi(theta) for any monotone function phi and any irrational theta.
引用
收藏
页码:267 / 283
页数:17
相关论文
共 50 条