The Groups of Fibred 2-Knots

被引:2
|
作者
Hillman, Jonathan A. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
来源
关键词
CONJECTURE; COMPLEXES;
D O I
10.1090/conm/597/11764
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore algebraic characterizations of 2-knots whose associated knot manifolds fibre over lower-dimensional orbifolds, and consider also some issues related to the groups of higher-dimensional fibred knots.
引用
收藏
页码:281 / 294
页数:14
相关论文
共 50 条
  • [1] 2-KNOTS WITH SOLVABLE GROUPS
    Hillman, Jonathan A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (07) : 977 - 994
  • [2] RIBBON 2-KNOTS
    OMAE, A
    PROCEEDINGS OF THE JAPAN ACADEMY, 1972, 47 : 850 - &
  • [3] Amphicheirality of ribbon 2-knots
    Yasuda, Tomoyuki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (09) : 9DUMNY
  • [4] Extension of Takahashi's ribbon 2-knots with isomorphic groups
    Kanenobu, Taizo
    Sumi, Toshio
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (02)
  • [5] Distinguishing 2-knots admitting circle actions by fundamental groups
    Fukuda, Mizuki
    Ishikawa, Masaharu
    REVISTA MATEMATICA COMPLUTENSE, 2024,
  • [6] Cubulated moves for 2-knots
    Pablo Diaz, Juan
    Hinojosa, Gabriela
    Verjosvky, Alberto
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (01)
  • [7] Shadows of 2-knots and complexity
    Naoe, Hironobu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (08):
  • [8] GEOMETRICALLY FIBERED 2-KNOTS
    HILLMAN, JA
    PLOTNICK, SP
    MATHEMATISCHE ANNALEN, 1990, 287 (02) : 259 - 273
  • [9] Ribbon-moves of 2-knots: The Torsion linking pairing and the n-invariants of 2-knots
    Ogasa, Eiji
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (05) : 523 - 543
  • [10] 2-CATEGORIES AND 2-KNOTS
    FISCHER, JE
    DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 493 - 526