EXISTENCE OF THREE WEAK SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS WITH VARIABLE EXPONENT AND NONHOMOGENEOUS NEUMANN CONDITIONS

被引:3
|
作者
Heidarkhani, S. [1 ]
De Araujo, A. L. A. [2 ]
Afrouzi, G. A. [3 ]
Moradi, S. [3 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Fed Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[3] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
来源
FIXED POINT THEORY | 2020年 / 21卷 / 02期
关键词
Variable exponent Sobolev spaces; p(x)-Kirchhoff-type problems; three weak solutions; variational methods; MULTIPLE SOLUTIONS; ELLIPTIC PROBLEMS; EQUATIONS; SPACES; FUNCTIONALS; (P(X);
D O I
10.24193/fpt-ro.2020.2.38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of at least three weak solutions for a class of differential equations with p(x)-Kirchhoff-type and subject to perturbations of nonhomogeneous Neumann conditions. Our technical approach is based on variational methods. Some applications and examples illustrate the obtained results.
引用
收藏
页码:525 / 548
页数:24
相关论文
共 50 条