Pointwise Convergence of Wavelets of Generalized Shannon Type

被引:0
|
作者
Shi, Xian Liang [1 ]
Wang, Wei [2 ]
机构
[1] Hunan Normal Univ, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[2] Cent South Univ Forestry & Technol, Sch Sci, Changsha 410004, Hunan, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Shannon type wavelet; wavelet expansions; pointwise convergence;
D O I
10.1007/s10114-013-1762-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new result on pointwise convergence of wavelets of generalized Shannon type is proved, which improves a theorem established by Zayed.
引用
收藏
页码:2343 / 2354
页数:12
相关论文
共 50 条
  • [1] Pointwise Convergence of Wavelets of Generalized Shannon Type
    Xian Liang SHI
    Wei WANG
    ActaMathematicaSinica, 2013, 29 (12) : 2343 - 2354
  • [2] Pointwise convergence of wavelets of generalized Shannon type
    Xian Liang Shi
    Wei Wang
    Acta Mathematica Sinica, English Series, 2013, 29 : 2343 - 2354
  • [3] Pointwise Convergence of Wavelets of Generalized Shannon Type
    Xian Liang SHI
    Wei WANG
    Acta Mathematica Sinica,English Series, 2013, (12) : 2343 - 2354
  • [4] Pointwise convergence of some conjugate convolution operators with applications to wavelets
    Hu, Lan
    Shi, Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (03) : 320 - 330
  • [5] Pointwise convergence of some conjugate convolution operators with applications to wavelets
    HU Lan
    SHI Xian-liang
    AppliedMathematics:AJournalofChineseUniversities, 2016, 31 (03) : 320 - 330
  • [6] Pointwise convergence of some conjugate convolution operators with applications to wavelets
    Lan Hu
    Xian-liang Shi
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 320 - 330
  • [7] Pointwise convergence of Fejer type means
    Brandolini, L
    Travaglini, G
    TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) : 323 - 336
  • [8] Pointwise convergence of generalized Kantorovich exponential sampling series
    Acar, Tuncer
    Kursun, Sadettin
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 : 1 - 10
  • [9] Shannon Wavelets Theory
    Cattani, Carlo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [10] Some Results on Shannon Wavelets and Wavelets Frames
    Shiralashetti S.C.
    Kumbinarasaiah S.
    International Journal of Applied and Computational Mathematics, 2019, 5 (1)