A Berry-Esseen theorem for weakly negatively dependent random variables and its applications

被引:35
|
作者
Wang, JF [1 ]
Zhang, LX
机构
[1] Zheiang Gonghang Univ, Dept Stat & Comp Sci, Hangzhou 310035, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
基金
中国国家自然科学基金;
关键词
Berry-Esseen theorem; linear negative quadrant dependence; negative association; convergence rate; central limit theorem; precise asymptotics; law of the iterated logarithm;
D O I
10.1007/s10474-006-0024-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide uniform rates of convergence in the central limit theorem for linear negative quadrant dependent (LNQD) random variables. Let {X-n, n >= 1} be a LNQD sequence of random variables with E X-n = 0, set S-n = Sigma(j=1)(n) X-j and B-n(2) = Var (S-n). We show that sup(x) vertical bar P (S-n/B-n < x) - Phi(x)vertical bar = O (n(-delta/(2+3 delta)) v = n(3 delta 2/(4+6 delta))/B-n(2+delta) Sigma(i=1)(n) E vertical bar X(i)vertical bar(2+delta)) under finite (2 + delta) th moment and a power decay rate of covariances. Moreover, by the truncation method, we obtain a Berry-Esseen type estimate for negatively associated (NA) random variables with only finite second moment. As applications, we obtain another convergence rate result in the central limit theorem and precise asymptotics in the law of the iterated logarithm for NA sequences, and also for LNQD sequences.
引用
收藏
页码:293 / 308
页数:16
相关论文
共 50 条