Effect of polyethylene glycol on mechanical properties of bamboo fiber-reinforced polylactic acid composites

被引:55
|
作者
Long, Haibo [1 ]
Wu, Zhiqiang [1 ]
Dong, Qianqian [1 ]
Shen, Yuting [1 ]
Zhou, Wuyi [1 ]
Luo, Ying [1 ]
Zhang, Chaoqun [1 ]
Dong, Xianming [1 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Biomass 3D Printing Mat Res Ctr, Guangzhou 510642, Guangdong, Peoples R China
关键词
biodegradable; composites; fibers; mechanical properties; plasticizer; PLA; POLYPROPYLENE; PLASTICIZERS; DEGRADATION; FABRICATION; BEHAVIOR; JUTE; PEG;
D O I
10.1002/app.47709
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The bamboo fiber (BF)-reinforced polylactic acid (PLA) composites were prepared using the twin-screw extruder and injection molding. Thermal gravimetric analyzer results indicated the thermal stability of BF/PLA composites decreased with increasing BF content. Differential scanning calorimeter and X-ray diffraction curves showed that BF played a role as a nucleating agent, but the crystallinity of composite materials decreased with the increasing BF content. The melt flow rate of composites reduced with the increase in BF content, resulting in a poorer processing property. The processability of the composites was improved with the addition of high molecular polyethylene glycol (PEG). Mechanics performance test showed that tensile strength and bending strength of composites increased at low loading with the BF content increased then decreased when the loading continued to increase. The tensile strength of the composite materials reached 65.46 MPa when alkali-treated BF (ABF) content was 20 wt %. The flexural strength of the composites reached 97.94 MPa when ABF content was 10 wt %. Impact performance has also been improved. PEG-20000 was the best plasticizer among the PEG-6000?PEG-10000, and PEG-20000. When the component of PEG was 10 wt %, the elongation increased by 56%. The scanning electron microscopy (SEM) result showed that the fracture of the composites was smooth, most ABF were wrapped in matrix and distribution of ABF in PLA matrix was more uniform. It means that interfacial compatibility of bamboo fiber and PLA improved after BF modified by alkali. High molecular weight PEG enhance melt flow ability of polymer, result in fibers were further enclosed in the PLA matrix and increase properties of composites. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47709.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Effect of Polyethylene glycol on Mechanical, Thermal, and Morphological Properties of Talc Reinforced Polylactic Acid Composites
    Saravana, Savitha
    Bheemaneni, Girija
    Kandaswamy, Ravichandran
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (01) : 1591 - 1598
  • [2] Physical, mechanical and thermal properties of novel bamboo/kenaf fiber-reinforced polylactic acid (PLA) hybrid composites
    Khan, Abir
    Sapuan, S. M.
    Zainudin, E. S.
    Zuhri, M. Y. M.
    COMPOSITES COMMUNICATIONS, 2024, 51
  • [3] Effect of Nucleating Agents Addition on Thermal and Mechanical Properties of Natural Fiber-Reinforced Polylactic Acid Composites
    Yang, Jae-Yeon
    Kim, Dong-Kyu
    Han, Woong
    Park, Jong-Yeon
    Kim, Kwan-Woo
    Kim, Byung-Joo
    POLYMERS, 2022, 14 (20)
  • [4] Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties
    Chen, XY
    Guo, QP
    Mi, YL
    JOURNAL OF APPLIED POLYMER SCIENCE, 1998, 69 (10) : 1891 - 1899
  • [5] Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites
    Ren, Wenhan
    Zhang, Dan
    Wang, Ge
    Cheng, Haitao
    BIORESOURCES, 2014, 9 (03): : 4117 - 4127
  • [6] Mechanical and thermal properties of bamboo pulp fiber reinforced polyethylene composites
    Cheng, H. (htcheng@icbr.ac.cn), 1600, North Carolina State University (09):
  • [7] Mechanical Characterization of Bamboo Fiber-Reinforced Green Composites
    Takagi, Hitoshi
    Fujii, Toshihiro
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS XII, 2014, 577-578 : 81 - +
  • [8] Mechanical properties of carbon fiber/polypropylene/ polylactic acid reinforced composites
    Song, Xueyang
    Zhang, Yan
    Xu, Chenggong
    Wang, Ping
    Ruan, Fangtao
    Fangzhi Xuebao/Journal of Textile Research, 2021, 42 (11): : 84 - 88
  • [9] Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing
    Long, Haibo
    Wu, Zhiqiang
    Dong, Qianqian
    Shen, Yuting
    Zhou, Wuyi
    Luo, Ying
    Zhang, Chaoqun
    Dong, Xianming
    POLYMER ENGINEERING AND SCIENCE, 2019, 59 (s2): : E247 - E260
  • [10] Mechanical and biodegradation properties of bamboo fiber-reinforced starch/polypropylene biodegradable composites
    Yang, Feiwen
    Long, Haibo
    Xie, Baojun
    Zhou, Wuyi
    Luo, Ying
    Zhang, Chaoqun
    Dong, Xianming
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (20)