Influence of biomass pretreatment on co-combustion characteristics with coal and biomass blends

被引:18
|
作者
Kim, Jong-Ho [1 ]
Jeong, Tae-Yong [1 ]
Yu, Jianglong [2 ,3 ]
Jeon, Chung-Hwan [1 ,4 ]
机构
[1] Pusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
[2] Univ Sci & Technol Liaoning, Sch Chem Engn, Key Lab Adv Coal & Coking Technol Liaoning Prov, Anshan 114051, Peoples R China
[3] Univ Newcastle, Chem Engn, Callaghan, NSW 2308, Australia
[4] Pusan Natl Univ, Pusan Clean Coal Ctr, Busan 46241, South Korea
关键词
Torrefaction; Ashless technology; NOx emission; Unburned carbon; Char reactivity; PULVERIZED COAL; KINETIC-PARAMETERS; TORREFIED BIOMASS; ALKALI-METALS; COMBUSTION; EMISSIONS; CO2; REACTIVITY; DEPOSITION; BEHAVIOR;
D O I
10.1007/s12206-019-0446-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fuel blending is one of the most effective ways to use biomass to reduce the use of coal. In this study, co-combustion characteristics including NOx emissions, unburned carbon (UBC), and the char reactivity of coal, biomass, and pretreated biomass blends were investigated by using a lap scale drop tube furnace (DTF) and thermogravimetric analyzer (TGA) to evaluate the availability of pretreated biomass from torrefaction or ashless technology to a pulverized coal boiler. In addition, scanning electron microscopy (SEM) was used to analyze the morphology of biomass and pretreated biomass to observe the physical differences between raw samples and their chars. In the results, NOx showed a linear correlation with the content of inherent fuel-N of biomass except in blending cases with ashless biomass. This indicated that the yields of NOx in these cases were higher than both that of single coal and ashless biomass. In addition, UBC declined with increasing the biomass blending ratio for all blending cases, and this can be explained by examining the fuel ratio and SEM images of the fuel samples. Finally, blends with coal and torrefied biomass showed higher char reactivity and lower activation energy than that with ashless biomass as the blending ratio increased. Overall, this paper indicates that it is better to increase the blending ratio of pretreated biomass than raw biomass up to 30% for enhanced reactivity and reduced emissions.
引用
收藏
页码:2493 / 2501
页数:9
相关论文
共 50 条
  • [1] Influence of biomass pretreatment on co-combustion characteristics with coal and biomass blends
    Jong-Ho Kim
    Tae-Yong Jeong
    Jianglong Yu
    Chung-Hwan Jeon
    Journal of Mechanical Science and Technology, 2019, 33 : 2493 - 2501
  • [2] Co-Combustion Characteristics of Typical Biomass and Coal Blends by Thermogravimetric Analysis
    Yuan, Ye
    He, Yong
    Tan, Jiaxin
    Wang, Yongmeng
    Kumar, Sunel
    Wang, Zhihua
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [3] Influence of co-combustion of coal/biomass on the corrosion
    Pisa, Ionel
    Lazaroiu, Gheorghe
    FUEL PROCESSING TECHNOLOGY, 2012, 104 : 356 - 364
  • [4] Fouling Characteristics of Coal Biomass Co-combustion and the Influence of the Deposition Surface
    Zhou, Hao
    Zhang, Jiakai
    Ma, Weichen
    Xu, Yong
    Zhao, Menghao
    ENERGY & FUELS, 2017, 31 (07) : 7069 - 7075
  • [5] Thermodynamics and synergistic effects on the co-combustion of coal and biomass blends
    Si, Fangyuan
    Zhang, Hongming
    Feng, Xiangrui
    Xu, Yulong
    Zhang, Lanjun
    Zhao, Lanming
    Li, Linglong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (14) : 7749 - 7761
  • [6] A REVIEW ON THE CHARACTERISTICS AND POLLUTANTS OF CO-COMBUSTION OF COAL WITH BIOMASS
    Wu, Bao-Zhen
    Ji, Hui-Xin
    Wu, Fu-Zhong
    Yang, Song
    Zheng, Xiao-Qian
    ENERGY, ENVIRONMENTAL & SUSTAINABLE ECOSYSTEM DEVELOPMENT, 2016,
  • [8] Co-Combustion Characteristics of Inferior Coal and Biomass Blends in an Oxygen-Enriched Atmosphere
    Pu, Ge
    Zhu, Weilin
    Zhou, Huping
    Lei, Qiang
    Zhang, Zhengren
    Liu, Jianjun
    BIORESOURCES, 2015, 10 (01): : 1452 - 1461
  • [9] Thermal behaviour and kinetics of coal/biomass blends during co-combustion
    Gil, M. V.
    Casal, D.
    Pevida, C.
    Pis, J. J.
    Rubiera, F.
    BIORESOURCE TECHNOLOGY, 2010, 101 (14) : 5601 - 5608
  • [10] Influence of biomass blends on the particle temperature and burnout characteristics during oxy-fuel co-combustion of coal
    Issac, Miriam
    De Girolamo, Anthony
    Dai, Baigian
    Hosseini, Tahereh
    Zhang, Lian
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (01) : 1 - 14