A New Objective Reduction Algorithm for Many-Objective Problems: Employing Mutual Information and Clustering Algorithm

被引:10
|
作者
Guo, Xiaofang [1 ]
Wang, Xiaoli [1 ]
Wang, Mingzhao [1 ]
Wang, Yuping [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
关键词
many-objective optimization; mutual information; PAM clustering algorithm; objective reduction; redundant objectives; conflict objectives;
D O I
10.1109/CIS.2012.11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many-objective optimization problems involving a large number (more than four) of objectives have aroused extensive attention. It is known that problems with a high number of objectives cause additional difficulties in visualization of the objective space, stagnation in search process and high computational cost. In this paper, a special class of many objective problems, which can be degenerated to a lower dimensional Pareto optimal front, has been investigated. A new objective reduction strategy based on clustering algorithm is proposed; meanwhile, we adopt a new criterion to measure the relationship between pairs of objectives by employing the concept of mutual information. The paper concludes with experimental results that the proposed objective reduction method can accurately eliminate redundant objectives and efficiently obtain essential objective set from original many-objective set on a wide range of test problems.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Many-objective artificial hummingbird algorithm: an effective many-objective algorithm for engineering design problems
    Kalita, Kanak
    Jangir, Pradeep
    Pandya, Sundaram B.
    Cep, Robert
    Abualigah, Laith
    Migdady, Hazem
    Daoud, Mohammad Sh
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2024, 11 (04) : 16 - 39
  • [2] An Objective Reduction Algorithm Based on Hyperplane Approximation for Many-Objective Optimization Problems
    Li, Yifan
    Liu, Hai-Lin
    Gu, Fangqing
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2470 - 2476
  • [3] Clustering Method using Pareto Corner Search Evolutionary Algorithm for Objective Reduction in Many-Objective Optimization Problems
    Xuan Hung Nguyen
    Lam Thu Bui
    Cao Truong Tran
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 78 - 84
  • [4] Objective Extraction for Many-Objective Optimization Problems: Algorithm and Test Problems
    Cheung, Yiu-ming
    Gu, Fangqing
    Liu, Hai-Lin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) : 755 - 772
  • [5] A Clustering-Based Evolutionary Algorithm for Many-Objective Optimization Problems
    Lin, Qiuzhen
    Liu, Songbai
    Wong, Ka-Chun
    Gong, Maoguo
    Coello Coello, Carlos A.
    Chen, Jianyong
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (03) : 391 - 405
  • [6] Many-objective African vulture optimization algorithm: A novel approach for many-objective problems
    Askr, Heba
    Farag, M. A.
    Hassanien, Aboul Ella
    Snasel, Vaclav
    Farrag, Tamer Ahmed
    PLOS ONE, 2023, 18 (05):
  • [7] A new evolutionary algorithm for solving many-objective optimization problems
    Zou, Xiufen
    Chen, Yu
    Liu, Minzhong
    Kang, Lishan
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1402 - 1412
  • [8] A chaotic-based improved many-objective Jaya algorithm for many-objective optimization problems
    Mane, Sandeep U.
    Narsingrao, M. R.
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS, 2021, 12 (01) : 49 - 62
  • [9] An objective reduction algorithm using representative Pareto solution search for many-objective optimization problems
    Guo, Xiaofang
    Wang, Yuping
    Wang, Xiaoli
    SOFT COMPUTING, 2016, 20 (12) : 4881 - 4895
  • [10] Many-Objective Evolutionary Algorithm: Objective Space Reduction and Diversity Improvement
    He, Zhenan
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (01) : 145 - 160