Metric Entropy of Classes of Sets with Positive Reach

被引:1
|
作者
Cockreham, James [1 ]
Gao, Fuchang [1 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
Metric entropy; Positive reach; Hausdorff distance; Simplicial approximation; Star-shaped; CONVEX-FUNCTIONS;
D O I
10.1007/s00365-017-9388-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sharp metric entropy estimates under Hausdorff distance are obtained for classes of bounded sets with positive reach, extending a well-known result of Bronshtein for the class of bounded convex sets.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 50 条
  • [1] Metric Entropy of Classes of Sets with Positive Reach
    James Cockreham
    Fuchang Gao
    Constructive Approximation, 2018, 47 : 357 - 371
  • [2] Metric entropy of some classes of sets
    E. M. Bronshteîn
    Siberian Mathematical Journal, 1997, 38 : 34 - 36
  • [3] Metric entropy of some classes of sets
    Bronshtein, EM
    SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (01) : 34 - 36
  • [4] SETS WITH POSITIVE REACH
    BANGERT, V
    ARCHIV DER MATHEMATIK, 1982, 38 (01) : 54 - 57
  • [5] Nonosculating sets of positive reach
    Zähle, M
    GEOMETRIAE DEDICATA, 1999, 76 (02) : 183 - 187
  • [6] On the structure of sets with positive reach
    Rataj, Jan
    Zajicek, Ludek
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (11-12) : 1806 - 1829
  • [7] Nonosculating Sets of Positive Reach
    M. Zähle
    Geometriae Dedicata, 1999, 76 : 183 - 187
  • [8] UNIVERSAL DONSKER CLASSES AND METRIC ENTROPY
    DUDLEY, RM
    ANNALS OF PROBABILITY, 1987, 15 (04): : 1306 - 1326
  • [9] Symplectomorphisms with positive metric entropy
    Avila, Artur
    Crovisier, Sylvain
    Wilkinson, Amie
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 124 (05) : 691 - 712
  • [10] Diffeomorphisms with positive metric entropy
    A. Avila
    S. Crovisier
    A. Wilkinson
    Publications mathématiques de l'IHÉS, 2016, 124 : 319 - 347