Dynamical instability of one-dimensional Morse system

被引:4
|
作者
Okabe, T
Yamada, H
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyou Ku, Kyoto 6068502, Japan
[2] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
来源
MODERN PHYSICS LETTERS B | 1999年 / 13卷 / 9-10期
关键词
D O I
10.1142/S0217984999000403
中图分类号
O59 [应用物理学];
学科分类号
摘要
Dynamical instability in an one-dimensional many-body system with Morse-type interaction potential is studied by computer simulation. The dynamical instability of the Morse system is caused by two kinds of instability. One is the parametric instability caused by the stochastic fluctuation of positive curvature of a Riemannian manifold and the other is the local instability approximated by the local negative eigenvalues of the Hessian matrix for the potential function. We investigate the energy dependence of the maximal Lyapunov exponent in order to emphasize the characteristic dynamical instability of the Morse system and compare the characteristics with results have been reported in Fermi-Pasta-Ulam system and Lennard-Jones system. We also investigate the energy dependence of the particle diffusion in the Morse system.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [1] Lyapunov instability of one-dimensional Morse system
    Okabe, T
    Yamada, H
    STATISTICAL PHYSICS, 2000, 519 : 338 - 340
  • [3] Energy dependence of dynamical instability in one-dimensional Lennard-Jones system
    Okabe, T
    Yamada, H
    MODERN PHYSICS LETTERS B, 2000, 14 (02): : 65 - 72
  • [4] Squeezed coherent states and the one-dimensional Morse quantum system
    Angelova, M.
    Hertz, A.
    Hussin, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (24)
  • [5] Quantum Hall effect in a one-dimensional dynamical system
    Dahlhaus, J. P.
    Edge, J. M.
    Tworzydlo, J.
    Beenakker, C. W. J.
    PHYSICAL REVIEW B, 2011, 84 (11)
  • [6] One-dimensional dynamical systems
    Efremova, L. S.
    Makhrova, E. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (05) : 821 - 881
  • [7] ONE-DIMENSIONAL INSTABILITY OF DETONATION
    SHCHELKIN, KI
    DOKLADY AKADEMII NAUK SSSR, 1965, 160 (05): : 1144 - +
  • [8] INSTABILITY IN ONE-DIMENSIONAL SYSTEMS
    BARUA, BP
    SINHA, SK
    PHYSICS LETTERS A, 1979, 73 (04) : 359 - 360
  • [9] On a one-dimensional version of the dynamical Marguerre-Vlasov system
    G. Perla Menzala
    Enrique Zuazua
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 2001, 32 : 303 - 319
  • [10] Dynamical delocalization of one-dimensional disordered system with lattice vibration
    Yamada, H
    Ikeda, KS
    PHYSICA B-CONDENSED MATTER, 1999, 263 : 156 - 159