Axiomatizability of homological classes of semimodules over semirings

被引:0
|
作者
Katsov, Y. [1 ]
机构
[1] Hanover Coll, Dept Math, Hanover, IN 47243 USA
关键词
Projective and injective semimodules; axiomatizability of homological classes of (semi)modules over (semi)rings; PRODUCTS; RINGS;
D O I
10.1142/S0219498820501820
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize semirings over which classes of projective, strongly projective, free, and injective semimodules are axiomatizable. Together with injectivity, we consider the concepts of Baer-injectivity and e-injectivity for semimodules over semirings and illustrate possible relationships between axiomatizabilities of the corresponding injective classes of semimodules, as well as characterize semirings over which the class of e-injective semimodules is axiomatizable.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On Flat Semimodules over Semirings
    Yefim Katsov
    algebra universalis, 2004, 51 : 287 - 299
  • [2] Toward homological structure theory of semimodules: On semirings all of whose cyclic semimodules are projective
    Il'in, S. N.
    Katsov, Y.
    Nam, T. G.
    JOURNAL OF ALGEBRA, 2017, 476 : 238 - 266
  • [3] On flat semimodules over semirings
    Katsov, Y
    ALGEBRA UNIVERSALIS, 2004, 51 (2-3) : 287 - 299
  • [4] Toward homological characterization of semirings by e-injective semimodules
    Abuhlail, J. Y.
    Il'in, S. N.
    Katsov, Y.
    Nam, T. G.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (04)
  • [5] Partial Γ-Semimodules over Partial Γ-Semirings
    Mala, M. Siva
    Rao, P. V. Srinivasa
    Kumar, K. Kiran
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2024, 56 (1-2):
  • [6] Bases in semimodules over commutative semirings
    Tan, Yi-Jia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 139 - 152
  • [7] SIMPLE SEMIMODULES OVER COMMUTATIVE SEMIRINGS
    JEZEK, J
    KEPKA, T
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 46 (1-4): : 17 - 27
  • [8] On injective envelopes of semimodules over semirings
    Il'in, S. N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07) : 1650122 - 1
  • [9] The further study of semimodules over commutative semirings
    Li, Yuying
    Xu, Xiaozhu
    Zhang, Haifeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (20) : 4929 - 4950
  • [10] ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION
    DUDNIKOV, PI
    SAMBORSKII, SN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 91 - 105