Analysis of a Frictionless Electro Viscoelastic Contact Problem with Signorini Conditions

被引:0
|
作者
Boulaouad, Abla [1 ]
Ourahmoun, Abbes [2 ]
Serrar, Touffik [1 ]
机构
[1] Ferhat Abbas Univ Setif 1, Dept Math, Setif, Algeria
[2] Ferhat Abbas Univ Setif 1, Inst Opt & Precis Mech, Setif, Algeria
关键词
elecro-viscoelastic materials; frictionless contact; Signorini conditions; maximal monotone operators; weak solution;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
study considered a mathematical model to describe the process of a quasi-static contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material was modeled with a nonlinear electro-viscoelastic constitutive law, the contact was frictionless, and the result was described with the Signorini condition. A variational formulation was derived for the problem, proving the existence and uniqueness of a weak solution of the model. The proof was based on arguments for nonlinear equations with maximal monotone operators.
引用
收藏
页码:9224 / 9228
页数:5
相关论文
共 50 条
  • [1] ANALYSIS OF A VISCOELASTIC FRICTIONLESS CONTACT PROBLEM WITH ADHESION
    Touzaline, Arezki
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 55 (05): : 411 - 430
  • [2] Numerical analysis of a frictionless viscoelastic piezoelectric contact problem
    Barboteu, Mikael
    Ramon Fernandez, Jose
    Ouafik, Youssef
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (04): : 667 - 682
  • [3] QUASISTATIC THERMO-ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH SIGNORINI AND TRESCA'S FRICTION
    Essoufi, El-Hassan
    Alaoui, Mohammed
    Bouallala, Mustapha
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [4] Numerical analysis of a viscoelastic frictionless contact problem with adhesion and damage
    Fernández, JR
    Kuttler, KL
    Shillor, M
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (01) : 63 - 68
  • [5] A dynamic frictionless contact problem using Signorini like compliance laws
    Bayada, G
    Chambat, M
    Lakhal, A
    Rochet, L
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1997, 35 (12-13) : 1245 - 1260
  • [6] Numerical analysis of a frictionless viscoelastic contact problem with normal damped response
    Fernández, JR
    Sofonea, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 549 - 568
  • [7] Frictionless Signorini's Contact Problem for Hyperelastic Materials with Interior Point Optimizer
    Houssein, Houssam
    Garnotel, Simon
    Hecht, Frederic
    ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [8] Weak solvability of a fractional viscoelastic frictionless contact problem
    Han, Jiangfeng
    Migorski, Stanislaw
    Zeng, Huidan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 303 : 1 - 18
  • [9] Frictionless Signorini’s Contact Problem for Hyperelastic Materials with Interior Point Optimizer
    Houssam Houssein
    Simon Garnotel
    Frédéric Hecht
    Acta Applicandae Mathematicae, 2023, 187
  • [10] Multigrid for the dual formulation of the frictionless Signorini problem
    Rovi, Gabriele
    Kober, Bernhard
    Starke, Gerhard
    Krause, Rolf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (10) : 2367 - 2388