Highly dispersed SiO2 microspheres with mean diameter of 200 nm were prepared by modified Stober method. Then the prepared SiO2 nanoparticles were coated with Co3O4 via liquid precipitation method and urea homogeneous precipitation method respectively, thus a new type SiO2/Co3O4 core-shell catalysts with different coating forms were obtained. X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared (IR) spectra, Raman Microscopy and BET specific surface area measurement were used to characterize the SiO2/CO3O4 composite nanoparticles. The catalytic activities of SiO2/Co3O4 composites for thermal decomposition of ammonium perchlorate (AP) were studied by differential scanning calorimetry (DSC). Furthermore, we espescially investigated the influence of different coating forms on its catalytic effect. The results indicate that SiO2/Co3O4 nanocomposites synthesised by different methods possess obvious core-shell structure are with high specific surface area,which are layer-coated and particle-coated respectively. And the catalytic activity of particle-coated SiO2/Co3O4 nanocomposites is best, which reduce the high decomposition temperature of AP by 110 degrees C, and increase heat quantity by 662 J.g(-1).