Non-Gaussian Minkowski functionals and extrema counts in redshift space

被引:55
|
作者
Codis, S. [1 ,2 ,3 ]
Pichon, C. [1 ,2 ,3 ]
Pogosyan, D. [4 ]
Bernardeau, F. [1 ,2 ,3 ]
Matsubara, T. [5 ]
机构
[1] Inst Astrophys Paris, F-75014 Paris, France
[2] UPMC UMR 7095, F-75014 Paris, France
[3] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[4] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada
[5] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
美国国家科学基金会;
关键词
methods: analytical; galaxies: statistics; cosmological parameters; large-scale structure of Universe; LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; ISODENSITY CONTOURS; MATHEMATICAL-ANALYSIS; NONLINEAR EVOLUTION; TOPOLOGY; STATISTICS; FLUCTUATIONS; GALAXIES; GENUS;
D O I
10.1093/mnras/stt1316
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the context of upcoming large-scale structure surveys such as Euclid, it is of prime importance to quantify the effect of peculiar velocities on geometric probes. Hence, the formalism to compute in redshift space the geometrical and topological one-point statistics of mildly non-Gaussian 2D and 3D cosmic fields is developed. Leveraging the partial isotropy of the target statistics, the Gram-Charlier expansion of the joint probability distribution of the field and its derivatives is reformulated in terms of the corresponding anisotropic variables. In particular, the cosmic non-linear evolution of the Minkowski functionals, together with the statistics of extrema, is investigated in turn for 3D catalogues and 2D slabs. The amplitude of the non-Gaussian redshift distortion correction is estimated for these geometric probes. In 3D, gravitational perturbation theory is implemented in redshift space to predict the cosmic evolution of all relevant Gram-Charlier coefficients. Applications to the estimation of the cosmic parameters sigma(z) and beta = f/b(1) from upcoming surveys are discussed. Such statistics are of interest for anisotropic fields beyond cosmology.
引用
收藏
页码:531 / 564
页数:34
相关论文
共 50 条
  • [1] Non Gaussian Minkowski functionals and extrema counts for CMB maps
    Pogosyan, Dmitri
    Codis, Sandrine
    Pichon, Christophe
    ZELDOVICH UNIVERSE: GENESIS AND GROWTH OF THE COSMIC WEB, 2016, 11 (S308): : 61 - 66
  • [2] Non-Gaussian extrema counts for CMB maps
    Pogosyan, Dmitri
    Pichon, Christophe
    Gay, Christophe
    PHYSICAL REVIEW D, 2011, 84 (08):
  • [3] Weakly non-Gaussian formula for the Minkowski functionals in general dimensions
    Matsubara, Takahiko
    Kuriki, Satoshi
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [4] Bispectrum non-Gaussian covariance in redshift space
    Salvalaggio, Jacopo
    Castiblanco, Lina
    Norena, Jorge
    Sefusatti, Emiliano
    Monaco, Pierluigi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (08):
  • [5] Towards a non-Gaussian model of redshift space distortions
    Cuesta-Lazaro, Carolina
    Li, Baojiu
    Eggemeier, Alexander
    Zarrouk, Pauline
    Baugh, Carlton M.
    Nishimichi, Takahiro
    Takada, Masahiro
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (01) : 1175 - 1193
  • [6] Non-Gaussian morphology on large scales:: Minkowski functionals of the REFLEX cluster catalogue
    Kerscher, M
    Mecke, K
    Schuecker, P
    Böhringer, H
    Guzzo, L
    Collins, CA
    Schindler, S
    De Grandi, S
    Cruddace, R
    ASTRONOMY & ASTROPHYSICS, 2001, 377 (01) : 1 - 16
  • [7] Non-gaussian morphology on large scales:: Minkowski functionals of the REFLEX clusters of galaxies
    Kerscher, M
    Mecke, K
    Schuecker, P
    Böhringer, H
    Guzzo, L
    De Grandi, S
    Collins, CA
    Schindler, S
    Cruddace, R
    TRACING COSMIC EVOLUTION WITH GALAXY CLUSTERS, PROCEEDINGS, 2002, 268 : 393 - 394
  • [8] Extrema statistics in the dynamics of a non-Gaussian random field
    Beuman, T. H.
    Turner, A. M.
    Vitelli, V.
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [9] Fast computation of the non-Gaussian covariance of redshift-space galaxy power spectrum multipoles
    Kobayashi, Yosuke
    PHYSICAL REVIEW D, 2023, 108 (10)
  • [10] State Space Gaussian Processes with Non-Gaussian Likelihood
    Nickisch, Hannes
    Solin, Arno
    Grigorievskiy, Alexander
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80