Sharp Holder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles

被引:37
|
作者
Cai, Ao [1 ]
Chavaudret, Claire [2 ]
You, Jiangong [3 ,4 ]
Zhou, Qi [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Univ Nice Sophia Antipolis Parc Valrose, Lab JA Dieudonne, F-06108 Nice 02, France
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
D O I
10.1007/s00209-018-2147-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if the base frequency is Diophantine, then the Lyapunov exponent of a Ck quasi-periodic SL(2,R) cocycle is 1/2-Holder continuous in the almost reducible regime. As a consequence, we show that if the frequency is Diophantine, and the potential is small, then the integrated density of states of the corresponding quasi-periodic Schrodinger operator is 1/2-Holder continuous.
引用
收藏
页码:931 / 958
页数:28
相关论文
共 50 条