SampleBoost for Capsule Endoscopy Categorization and Abnormality Detection

被引:0
|
作者
Abouelenien, Mohamed [1 ]
Yuan, Xiaohui [1 ]
机构
[1] Univ N Texas, Comp Sci & Engn Dept, Denton, TX 76203 USA
关键词
Classification; Boosting; Sampling; Capsule Endoscopy; PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing Capsule Endoscopy videos is an expensive process that requires considerable human effort and time. The massive amount of data limits the usage of ensemble learning methods. In this paper SampleBoost, a boosting method that employs novel intelligent sampling, is proposed to learn from capsule endoscopy data. Sample Boost intelligently selects a subset of the training set at each iteration and evens imbalanced classes Experimental results show a great improvement in both accuracy and efficiency as well as avoidance of early termination for both the balanced images categorization and the imbalanced abnormality detection.
引用
收藏
页码:285 / 294
页数:10
相关论文
共 50 条
  • [1] Automatic Abnormality Detection System for Capsule Endoscopy
    Jani, Kuntesh K.
    Anand, Animesh
    Srivastava, Subodh
    Srivastava, Rajeev
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (05) : 955 - 966
  • [2] Feature extraction for abnormality detection in capsule endoscopy images
    Amiri, Zahra
    Hassanpour, Hamid
    Beghdadi, Azeddine
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [3] Multi-frame Abnormality Detection in Video Capsule Endoscopy
    Jablonski, James
    Fernandes, Philip
    Adewole, Sodiq
    Syed, Sana
    Brown, Donald
    Porter, Michael
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2021, VOL 2, 2022, 359 : 177 - 186
  • [4] Dilated CNN for abnormality detection in wireless capsule endoscopy images
    Nidhi Goel
    Samarjeet Kaur
    Deepak Gunjan
    S. J. Mahapatra
    Soft Computing, 2022, 26 : 1231 - 1247
  • [5] Dilated CNN for abnormality detection in wireless capsule endoscopy images
    Goel, Nidhi
    Kaur, Samarjeet
    Gunjan, Deepak
    Mahapatra, S. J.
    SOFT COMPUTING, 2022, 26 (03) : 1231 - 1247
  • [6] Detection of abnormality in wireless capsule endoscopy images using fractal features
    Jain, Samir
    Seal, Ayan
    Ojha, Aparajita
    Krejcar, Ondrej
    Bures, Jan
    Tacheci, Ilja
    Yazidi, Anis
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 127
  • [7] A CONVOLUTIONAL NEURAL NETWORK APPROACH FOR ABNORMALITY DETECTION IN WIRELESS CAPSULE ENDOSCOPY
    Sekuboyina, Anjany Kumar
    Devarakonda, Surya Teja
    Seelamantula, Chandra Sekhar
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1057 - 1060
  • [8] Investigating the significance of color space for abnormality detection in wireless capsule endoscopy images
    Goel, Nidhi
    Kaur, Samarjeet
    Gunjan, Deepak
    Mahapatra, S. J.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [9] Capsule endoscopy regional transit abnormality revisited
    Tang, SJ
    Zanati, S
    Dubcenco, E
    Monkewich, G
    Arya, N
    Cirocco, M
    Kandel, G
    Kortan, P
    Haber, GB
    Marcon, NE
    GASTROINTESTINAL ENDOSCOPY, 2004, 60 (06) : 1029 - 1032
  • [10] Lumen detection for capsule endoscopy
    Zabulis, Xenophon
    Argyros, Antonis A.
    Tsakiris, Dimitris P.
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 3921 - 3926