Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates

被引:43
|
作者
Jha, D. K. [1 ]
Kant, Tarun [2 ]
Singh, R. K. [3 ]
机构
[1] Bhabha Atom Res Ctr, Arch & Civil Engg Div, Bombay 400085, Maharashtra, India
[2] Indian Inst Technol, Dept Civil Engn, Bombay 400076, Maharashtra, India
[3] Bhabha Atom Res Ctr, CSS, Reactor Safety Div, Bombay 400085, Maharashtra, India
关键词
SANDWICH PLATES;
D O I
10.1016/j.nucengdes.2012.05.001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A higher order shear and normal deformation theory (HOSNT) is presented for free vibration analysis of functionally graded (FG) elastic, rectangular, and simply supported (diaphragm) plates. Functionally graded materials (FGMs), although heterogeneous are idealized as continua with their mechanical properties changing smoothly with respect to the spatial coordinates. The material properties of FG plates are assumed to be varying through thickness of the plate in a continuous manner. Poisson's ratio is assumed to be constant, but their Young's moduli and densities vary continuously in the thickness direction according to the volume fraction of constituents, which is mathematically modelled as power law function. The equations of motion are obtained using Hamilton's principle employing HOSNT. Navier solution method is used to solve the equations of motion. The effect of variation of material properties in terms of gradation index on the natural frequencies of FG plates is studied in this article. In this study, the effects of aspect ratios, thickness ratio, material variations of FG plates on their natural frequencies are examined. It is thought that the tabulated results would be a reference for other researchers to compare their results. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 13
页数:6
相关论文
共 50 条
  • [1] FREE VIBRATION OF FUNCTIONALLY GRADED PLATES WITH A HIGHER-ORDER SHEAR AND NORMAL DEFORMATION THEORY
    Jha, D. K.
    Kant, Tarun
    Singh, R. K.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2013, 13 (01)
  • [2] A NEW TRIGONOMETRIC HIGHER-ORDER SHEAR AND NORMAL DEFORMATION THEORY FOR FUNCTIONALLY GRADED PLATES
    Gupta, Ankit
    Talha, Mohammad
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 1, 2017,
  • [3] Analysis of functionally graded plates using higher order shear deformation theory
    Taj, M. N. A. Gulshan
    Chakrabarti, Anupam
    Sheikh, Abdul Hamid
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (18-19) : 8484 - 8494
  • [4] Stress Analysis of Transversely Loaded Functionally Graded Plates with a Higher Order Shear and Normal Deformation Theory
    Jha, D. K.
    Kant, Tarun
    Singh, R. K.
    JOURNAL OF ENGINEERING MECHANICS, 2013, 139 (12) : 1663 - 1680
  • [5] An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates
    Belabed, Zakaria
    Houari, Mohammed Sid Ahmed
    Tounsi, Abdelouahed
    Mahmoud, S. R.
    Beg, O. Anwar
    COMPOSITES PART B-ENGINEERING, 2014, 60 : 274 - 283
  • [6] A new higher-order shear deformation theory for frequency analysis of functionally graded porous plates
    Seyfi, Ali
    Maleki, Mohammadreza
    Chen, Zengtao
    Ebrahimi, Farzad
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (22) : 11066 - 11080
  • [7] A nth-order shear deformation theory for natural frequency of the functionally graded plates on elastic foundations
    Xiang, Song
    Kang, Gui-wen
    Liu, Yuan-qiang
    COMPOSITE STRUCTURES, 2014, 111 : 224 - 231
  • [8] A new higher order shear and normal deformation theory for functionally graded beams
    Meradjah, Mustapha
    Kaci, Abdelhakim
    Houari, Mohammed Sid Ahmed
    Tounsi, Abdelouahed
    Mahmoud, S. R.
    STEEL AND COMPOSITE STRUCTURES, 2015, 18 (03): : 793 - 809
  • [9] Isogeometric analysis of functionally graded plates with a logarithmic higher order shear deformation theory
    Zhu, Yaqiao
    Shi, Peng
    Kang, Yongtao
    Cheng, Baofa
    THIN-WALLED STRUCTURES, 2019, 144
  • [10] Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory
    Zenkour, A. M.
    Aljadani, M. H.
    ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE, 2018, 5 (06): : 615 - 632