Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation

被引:76
|
作者
Peng, Rui [1 ]
Wang, Rongjie [2 ]
Wang, Zhenyu [1 ]
Lai, Yawen [1 ]
Wang, Ronggang [1 ,2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE RECONSTRUCTION;
D O I
10.1109/CVPR52688.2022.00845
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth estimation is solved as a regression or classification problem in existing learning-based multi-view stereo methods. Although these two representations have recently demonstrated their excellent performance, they still have apparent shortcomings, e.g., regression methods tend to overfit due to the indirect learning cost volume, and classification methods cannot directly infer the exact depth due to its discrete prediction. In this paper, we propose a novel representation, termed Unification, to unify the advantages of regression and classification. It can directly constrain the cost volume like classification methods, but also realize the sub-pixel depth prediction like regression methods. To excavate the potential of unification, we design a new loss function named Unified Focal Loss, which is more uniform and reasonable to combat the challenge of sample imbalance. Combining these two unburdened modules, we present a coarse-to-fine framework, that we call UniMVSNet. The results of ranking first on both DTU and Tanks and Temples benchmarks verify that our model not only performs the best but also has the best generalization ability.
引用
收藏
页码:8635 / 8644
页数:10
相关论文
共 50 条
  • [1] Continuous Depth Estimation for Multi-view Stereo
    Liu, Yebin
    Cao, Xun
    Dai, Qionghai
    Xu, Wenli
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2121 - 2128
  • [2] Adaptive depth estimation for pyramid multi-view stereo
    Liao, Jie
    Fu, Yanping
    Yan, Qingan
    Luo, Fei
    Xiao, Chunxia
    COMPUTERS & GRAPHICS-UK, 2021, 97 : 268 - 278
  • [3] REVISED DEPTH MAP ESTIMATION FOR MULTI-VIEW STEREO
    Yao, Yao
    Zhu, Hao
    Nie, Yongming
    Ji, Xiaoli
    Cao, Xun
    2014 INTERNATIONAL CONFERENCE ON 3D IMAGING (IC3D), 2014,
  • [4] Uncertainty Guided Multi-View Stereo Network for Depth Estimation
    Su, Wanjuan
    Xu, Qingshan
    Tao, Wenbing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7796 - 7808
  • [5] FADE: Feature Aggregation for Depth Estimation With Multi-View Stereo
    Yang, Hsiao-Chien
    Chen, Po-Heng
    Chen, Kuan-Wen
    Lee, Chen-Yi
    Chen, Yong-Sheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6590 - 6600
  • [6] Learning Descriptor, Confidence, and Depth Estimation in Multi-view Stereo
    Choi, Sungil
    Kim, Seungryong
    Park, Kihong
    Sohn, Kwanghoon
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 389 - 395
  • [7] Depth Estimation in Multi-View Stereo Based on Image Pyramid
    Xu, Hanfei
    Cai, Yangang
    Wang, Ronggang
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 345 - 349
  • [8] Multi-view Stereo by Fusing Monocular and a Combination of Depth Representation Methods
    Yu, Fanqi
    Sun, Xinyang
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 298 - 309
  • [9] Rethinking Disparity: A Depth Range Free Multi-View Stereo Based on Disparity
    Yan, Qingsong
    Wang, Qiang
    Zhao, Kaiyong
    Li, Bo
    Chu, Xiaowen
    Deng, Fei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3091 - 3099
  • [10] IAFMVS: Iterative Depth Estimation with Adaptive Features for Multi-View Stereo
    Zhao, Guyu
    Wei, Huyixin
    He, Hongdou
    NEUROCOMPUTING, 2025, 629