PynPoint: a modular pipeline architecture for processing and analysis of high-contrast imaging data

被引:52
|
作者
Stolker, T. [1 ]
Bonse, M. J. [1 ]
Quanz, S. P. [1 ]
Amara, A. [1 ]
Cugno, G. [1 ]
Bohn, A. J. [2 ]
Boehle, A. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
基金
瑞士国家科学基金会;
关键词
methods: data analysis; techniques: high angular resolution; techniques: image processing; planets and satellites: detection; 51 ERI B; SUBTRACTION; ALGORITHM; EVOLUTION; PLANETS; DISK;
D O I
10.1051/0004-6361/201834136
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The direct detection and characterization of planetary and substellar companions at small angular separations is a rapidly advancing field. Dedicated high-contrast imaging instruments deliver unprecedented sensitivity, enabling detailed insights into the atmospheres of young low-mass companions. In addition, improvements in data reduction and point spread function (PSF)-subtraction algorithms are equally relevant for maximizing the scientific yield, both from new and archival data sets. Aims. We aim at developing a generic and modular data-reduction pipeline for processing and analysis of high-contrast imaging data obtained with pupil-stabilized observations. The package should be scalable and robust for future implementations and particularly suitable for the 3-5 mu m wavelength range where typically thousands of frames have to be processed and an accurate subtraction of the thermal background emission is critical. Methods. PynPoint is written in Python 2.7 and applies various image-processing techniques, as well as statistical tools for analyzing the data, building on open-source Python packages. The current version of PynPoint has evolved from an earlier version that was developed as a PSF-subtraction tool based on principal component analysis (PCA). Results. The architecture of PynPoint has been redesigned with the core functionalities decoupled from the pipeline modules. Modules have been implemented for dedicated processing and analysis steps, including background subtraction, frame registration, PSF subtraction, photometric and astrometric measurements, and estimation of detection limits. The pipeline package enables end-to-end data reduction of pupil-stabilized data and supports classical dithering and coronagraphic data sets. As an example, we processed archival VLT/NACO L' and M' data of beta Pic b and reassessed the brightness and position of the planet with a Markov chain Monte Carlo analysis; we also provide a derivation of the photometric error budget.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The Geneva Reduction and Analysis Pipeline for High-contrast Imaging of planetary Companions
    Hagelberg, J.
    Segransan, D.
    Udry, S.
    Wildi, F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (02) : 2178 - 2186
  • [2] Data Processing for High-Contrast Imaging with the James Webb Space Telescope
    Ygouf, Marie
    Rocha, Graca
    Beichman, Charles
    Greenbaum, Alexandra
    Leisenring, Jarron M.
    De Furio, Matthew
    Meyer, Michael
    Girard, Julien
    Pueyo, Laurent A.
    Perrin, Marshall
    Uyama, Taichi
    Green, Joseph
    Jewell, Jeffrey
    SPACE TELESCOPES AND INSTRUMENTATION 2020: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2021, 11443
  • [3] NEW TECHNIQUES FOR HIGH-CONTRAST IMAGING WITH ADI: THE ACORNS-ADI SEEDS DATA REDUCTION PIPELINE
    Brandt, Timothy D.
    McElwain, Michael W.
    Turner, Edwin L.
    Abe, L.
    Brandner, W.
    Carson, J.
    Egner, S.
    Feldt, M.
    Golota, T.
    Goto, M.
    Grady, C. A.
    Guyon, O.
    Hashimoto, J.
    Hayano, Y.
    Hayashi, M.
    Hayashi, S.
    Henning, T.
    Hodapp, K. W.
    Ishii, M.
    Iye, M.
    Janson, M.
    Kandori, R.
    Knapp, G. R.
    Kudo, T.
    Kusakabe, N.
    Kuzuhara, M.
    Kwon, J.
    Matsuo, T.
    Miyama, S.
    Morino, J. -I.
    Moro-Martin, A.
    Nishimura, T.
    Pyo, T. -S.
    Serabyn, E.
    Suto, H.
    Suzuki, R.
    Takami, M.
    Takato, N.
    Terada, H.
    Thalmann, C.
    Tomono, D.
    Watanabe, M.
    Wisniewski, J. P.
    Yamada, T.
    Takami, H.
    Usuda, T.
    Tamura, M.
    ASTROPHYSICAL JOURNAL, 2013, 764 (02):
  • [4] Halftoning for high-contrast imaging
    Martinez, P.
    Dorrer, C.
    Carpentier, E. Aller
    Kasper, M.
    Boccaletti, A.
    Dohlen, K.
    RESEARCH, SCIENCE AND TECHNOLOGY OF BROWN DWARFS AND EXOPLANETS, 2011, 16
  • [5] The architecture of the LkCa 15 transitional disk revealed by high-contrast imaging
    Thalmann, C.
    Mulders, G. D.
    Hodapp, K.
    Janson, M.
    Grady, C. A.
    Min, M.
    Ovelar, M. de Juan
    Carson, J.
    Brandt, T.
    Bonnefoy, M.
    McElwain, M. W.
    Leisenring, J.
    Dominik, C.
    Henning, T.
    Tamura, M.
    ASTRONOMY & ASTROPHYSICS, 2014, 566
  • [6] Compact high-contrast TEM combines imaging and analysis
    不详
    ADVANCED MATERIALS & PROCESSES, 2007, 165 (10): : 13 - 13
  • [7] Using Data Imputation for Signal Separation in High-contrast Imaging
    Ren, Bin
    Pueyo, Laurent
    Chen, Christine
    Choquet, Elodie
    Debes, John H.
    Duchene, Gaspard
    Menard, Francois
    Perrin, Marshall D.
    ASTROPHYSICAL JOURNAL, 2020, 892 (02):
  • [8] VIP: Vortex Image Processing Package for High-contrast Direct Imaging
    Gonzalez, Carlos Alberto Gomez
    Wertz, Olivier
    Absil, Olivier
    Christiaens, Valentin
    Defrere, Denis
    Mawet, Dimitri
    Milli, Julien
    Absil, Pierre-Antoine
    Van Droogenbroeck, Marc
    Cantalloube, Faustine
    Hinz, Philip M.
    Skemer, Andrew J.
    Karlsson, Mikael
    Surdej, Jean
    ASTRONOMICAL JOURNAL, 2017, 154 (01):
  • [9] Karhunen-Loeve data imputation in high-contrast imaging
    Ren, Bin B.
    ASTRONOMY & ASTROPHYSICS, 2023, 679
  • [10] Recurrence Quantification Analysis as a Post-processing Technique in Adaptive Optics High-contrast Imaging
    Stangalini, M.
    Causi, G. Li
    Pedichini, F.
    Antoniucci, S.
    Mattioli, M.
    Christou, J.
    Consolini, G.
    Hope, D.
    Jefferies, S. M.
    Piazzesi, R.
    Testa, V.
    ASTROPHYSICAL JOURNAL, 2018, 868 (01):