NUMBER OF SINGULAR POINTS OF AN ANNULUS IN C2

被引:2
|
作者
Borodzik, Maciej [1 ]
Zoladek, Henryk [1 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
Annulus; cuspidal singular point; codimension; ALGEBRAIC PLANE-CURVES; C2;
D O I
10.5802/aif.2650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using BMY inequality and a Milnor number bound we prove that any algebraic annulus C* in C-2 with no self-intersections can have at most three cuspidal singularities.
引用
收藏
页码:1539 / 1555
页数:17
相关论文
共 50 条
  • [1] Bifurcations of periodic points of holomorphic maps from C2 into C2
    Guang, YZ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 : 353 - 380
  • [2] The Feasibility of Multiple Fixation Points in C2
    Ngoc, Quyen Nguyen
    Riew, K. Daniel
    Lee, So Min
    Park, Sang-Min
    Kim, Ho-Joong
    Chang, Bong-Soon
    Lee, Sang-Hun
    Lee, Jae Chul
    Yeom, Jin S.
    ASIAN SPINE JOURNAL, 2023, 17 (05) : 888 - 893
  • [3] On transverse rigidity for singular foliations in (C2, 0)
    Rebelo, Julio C.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 935 - 950
  • [4] GEOMETRY OF DOUBLE CHARACTERISTICS AND SINGULAR SOLUTIONS IN C2
    IGARI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (02): : 349 - 355
  • [5] Number of rational points of a singular curve
    Galindo, WAZ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) : 2549 - 2556
  • [6] DISTRIBUTION OF PERIODIC POINTS OF POLYNOMIAL DIFFEOMORPHISMS OF C2
    BEDFORD, E
    LYUBICH, M
    SMILLIE, J
    INVENTIONES MATHEMATICAE, 1993, 114 (02) : 277 - 288
  • [7] ON THE NUMBER OF 2ND-GROUP SINGULAR POINTS OF CUBIC SYSTEM
    USHKHO, DS
    DIFFERENTIAL EQUATIONS, 1993, 29 (02) : 194 - 197
  • [8] Invariant sets associated with singular holomorphic foliations in C2
    Fierro, E
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (04) : 481 - 491
  • [9] Lenses on very curved zones of a singular foliation of C2
    Langevin, Remi
    Sifre, Jean-Claude
    TOPOLOGY AND ITS APPLICATIONS, 2018, 234 : 397 - 414
  • [10] Rationally convex domains and singular Lagrangian surfaces in C2
    Nemirovski, Stefan
    Siegel, Kyler
    INVENTIONES MATHEMATICAE, 2016, 203 (01) : 333 - 358