Target detection and classification using a deformable template

被引:0
|
作者
Dufour, RM [1 ]
Miller, EL [1 ]
Galatsanos, NP [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
来源
关键词
template matching; MAP estimation; multiscale templates;
D O I
10.1117/12.445392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Two common image processing problems are determining the location of an object using a template when the size and rotation of the true target are unknowns and classifying an object into one of a library of objects again using a template-based matching technique. When employing a maximum likelihood approach to these problems, complications occur due to local maxima on the likelihood surface. In previous work, we demonstrated a technique for object localization which employs a library of templates starting from the smooth approximation and adding detail until the exact template is reached. Successively estimating the geometric parameters (i.e. size and rotation) using these templates achieves the accuracy of the exact template while remaining within a well-behaved "bowl" in the search space which allows standard maximization techniques to be used. In this work. we show how this technique can be extended to solve the classification problem using a multiple template library. We introduce a steering parameter which at every scale, allows us to compute a template as a linear combination of templates in the library. The algorithm begins the template matching using a smooth blob which is the smooth approximation common to all templates in the library. As the location and geometric parameter estimates are improved and detail is added, the smooth template is "steered" towards the most likely template in the library and thus classification is achieved.
引用
收藏
页码:444 / 453
页数:10
相关论文
共 50 条
  • [1] Eye detection using a deformable template in static images
    Carvalho, Fernando Jorge Soares
    Tavares, J. I. M. R. S.
    COMPUTATIONAL VISION AND MEDICAL IMAGING PROCESSING, 2008, : 209 - +
  • [2] Pupil detection and gaze tracking using a deformable template
    Lee, Gyung-Ju
    Jang, Seok-Woo
    Kim, Gye-Young
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (19-20) : 12939 - 12958
  • [3] Pupil detection and gaze tracking using a deformable template
    Gyung-Ju Lee
    Seok-Woo Jang
    Gye-Young Kim
    Multimedia Tools and Applications, 2020, 79 : 12939 - 12958
  • [4] Classification and tracking of hand region using deformable template and condensation
    Jeong, Hyeon-Seok
    Joo, Young-Hoon
    Transactions of the Korean Institute of Electrical Engineers, 2010, 59 (08): : 1477 - 1481
  • [5] Design and implementation of object detection and classification system based on deformable template algorithm
    Mengko, TL
    Adiono, T
    Setyawan, H
    Setiadarma, R
    APCCAS '98 - IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: MICROELECTRONICS AND INTEGRATING SYSTEMS, 1998, : 311 - 314
  • [6] Automatic target detection using binary template matching
    Jun, DS
    Sun, SG
    Park, HW
    OPTICAL ENGINEERING, 2005, 44 (03) : 1 - 7
  • [7] Vehicle Detection by Sparse Deformable Template Models
    Wang, Jingcong
    Zhang, Shuo
    Chen, James
    2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), 2014, : 203 - 206
  • [8] Deformable Template Network (DTN) for Object Detection
    Wu, Shuai
    Xu, Yong
    Zhang, Bob
    Yang, Jian
    Zhang, David
    IEEE Transactions on Multimedia, 2022, 24 : 2058 - 2068
  • [9] Deformable Template Network (DTN) for Object Detection
    Wu, Shuai
    Xu, Yong
    Zhang, Bob
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2058 - 2068
  • [10] Invariant histograms and deformable template matching for SAR target recognition
    Ikeuchi, K
    Shakunaga, T
    Wheeler, MD
    Yamazaki, T
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 100 - 105