The topological property of the irregular sets on the lengths of basic intervals in beta-expansions

被引:2
|
作者
Zheng, Lixuan [1 ]
Wu, Min [1 ]
Li, Bing [1 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
关键词
Beta-expansion; Irregular set; Extremely irregular number; Residual; SPECIFICATION PROPERTY; NONNORMAL NUMBERS; BAIRE CATEGORY;
D O I
10.1016/j.jmaa.2016.11.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let beta > 1 be a real number. A basic interval of order n is a set of real numbers in (0,1] having the same first n digits in their beta-expansion which contains x is an element of (0,1], denote by I-n(x) and write the length of I-n(x) as vertical bar I-n(x)vertical bar. In this paper, we prove that the extremely irregular set containing points x is an element of [0,1] whose upper limit of -log(beta) vertical bar I-n(x)vertical bar/n equals to 1 + lambda(beta) is residual for every lambda(beta) > 0, where lambda(beta) is a constant depending on beta. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 5 条
  • [1] On the lengths of basic intervals in beta expansions
    Fan, Ai-Hua
    Wang, Bao-Wei
    NONLINEARITY, 2012, 25 (05) : 1329 - 1343
  • [2] Intersections of homogeneous Cantor sets and beta-expansions
    Kong, Derong
    Li, Wenxia
    Dekking, F. Michel
    NONLINEARITY, 2010, 23 (11) : 2815 - 2834
  • [3] Hausdorff dimension of frequency sets in beta-expansions
    Li, Yao-Qiang
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2059 - 2076
  • [4] Hausdorff dimension of frequency sets in beta-expansions
    Yao-Qiang Li
    Mathematische Zeitschrift, 2022, 302 : 2059 - 2076
  • [5] EXCEPTIONAL SETS RELATED TO THE RUN-LENGTH FUNCTION OF BETA-EXPANSIONS
    Fang, Lulu
    Song, Kunkun
    Wu, Min
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)