A DEEP LEARNING METHOD FOR FINED-GRAINED URBAN GREEN SPACE MAPPING

被引:0
|
作者
Liu, Mengxi [1 ]
Li, Jianlong [1 ]
Li, Zeteng [1 ]
Shi, Qian [1 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
关键词
Urban green space; deep learning; convolutional nerual network; high-resolution images;
D O I
10.1109/IGARSS46834.2022.9884665
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In view of the challenges on urban green space (UGS) mapping from high-resolution images (HRIs), including insufficient dataset as well as the intra-class difference and interclass similarity of UGS in HRIs, we propose a novel network for UGS extraction (UGSNet) and collect an large urban green space dataset (UGSet) with 4,454 samples of size 512x512 in this paper. The UGSNet integrates the attention mechanism to improve the discrimination of UGS, and employs a point head with point rending strategy for precise edge recovery. Comparison experiments with the state-of-the-art (SOTA) semantic segmentation models show that the UGSNet can achieve the highest F1 of 77.30% on UGSet.
引用
收藏
页码:6029 / 6032
页数:4
相关论文
共 50 条
  • [1] Generalized fined-grained multiscale information entropy with multi-feature extraction and its application in phase space reconstruction
    Shen, Yupeng
    Li, Yaan
    Li, Weijia
    Yao, Quanmao
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [2] UGS-1m: fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework
    Shi, Qian
    Liu, Mengxi
    Marinoni, Andrea
    Liu, Xiaoping
    EARTH SYSTEM SCIENCE DATA, 2023, 15 (02) : 555 - 577
  • [3] Deep Green Diagnostics: Urban Green Space Analysis Using Deep Learning and Drone Images
    Moreno-Armendariz, Marco A.
    Calvo, Hiram
    Duchanoy, Carlos A.
    Lopez-Juarez, Anayantzin P.
    Vargas-Monroy, Israel A.
    Suarez-Castanon, Miguel Santiago
    SENSORS, 2019, 19 (23)
  • [4] Deep learning in urban green space extraction in remote sensing: a comprehensive systematic review
    Huang, Yuhong
    Wang, Lihui
    Zhao, Pengcheng
    Zhao, Yifan
    Yang, Qichi
    Du, Yun
    Ling, Feng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024,
  • [5] Mapping the Green Urban: A Comprehensive Review of Materials and Learning Methods for Green Infrastructure Mapping
    Dobrinic, Dino
    Miler, Mario
    Medak, Damir
    SENSORS, 2025, 25 (02)
  • [6] Mapping demand and supply of functional niches of urban green space
    Schrammeijer, Elizabeth A.
    Malek, Ziga
    Verburg, Peter H.
    ECOLOGICAL INDICATORS, 2022, 140
  • [7] A fine-grained investigation on the predictors of urban green space growth in Nanjing
    Zhou, Conghui
    Jin, Zhao
    Zhang, Shining
    INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2024,
  • [8] Mapping and Visualizing Deep-Learning Urban Beautification
    Kauer, Tobias
    Joglekar, Sagar
    Redi, Miriam
    Aiello, Luca Maria
    Quercia, Daniele
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2018, 38 (05) : 70 - 83
  • [9] DEEP LEARNING BASED URBAN FLOOD MAPPING FROM HIGH RESOLUTION CAPELLA SPACE SAR IMAGERY
    Popien, Philip
    D'Hondt, Olivier
    Sunkara, Veda
    Chakrabarti, Subit
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1384 - 1387
  • [10] FINE-GRAINED BUILDING ATTRIBUTES MAPPING BASED ON DEEP LEARNING AND A SATELLITE-TO-STREET VIEW MATCHING METHOD
    Chen, Dairong
    Yu, Jinhua
    Li, Weijia
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5878 - 5881