Selective sensing of saccharides using simple boronic acids and their aggregates

被引:511
|
作者
Wu, Xin [1 ,2 ]
Li, Zhao [1 ,2 ]
Chen, Xuan-Xuan [1 ,2 ]
Fossey, John S. [3 ]
James, Tony D. [4 ]
Jiang, Yun-Bao [1 ,2 ]
机构
[1] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, MOE Key Lab Analyt Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Xiamen 361005, Peoples R China
[3] Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England
[4] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
FLUORESCENT CHEMOSENSORS; GLUCOSE RECOGNITION; SYNTHETIC LECTIN; REDUCING SUGARS; BINDING; SENSOR; COMPLEXATION; RECEPTORS; DISACCHARIDES; CYCLODEXTRIN;
D O I
10.1039/c3cs60148j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reversible boronic acid-diol interaction empowers boronic acid receptors' saccharide binding capacities, rendering them a class of lectin mimetic, termed "boronlectins". Boronic acids follow lectin functions not just in being able to bind saccharides, but in multivalent saccharide binding that enhances both affinity and selectivity. For almost a decade, efforts have been made to achieve and improve selectivity for given saccharide targets, most notably glucose, by using properly positioned boronic acids, offering multivalent interactions. Incorporation of several boronic acid groups into a covalent framework or non-covalent assembly of boronic acid are two general methods used to create such smart sensors, of which the latter resembles lectin oligomerisation that affords multivalent saccharide-binding architectures. In this review, we discuss supramolecular selective sensing of saccharides by using simple boronic acids in their aggregate forms, after a brief survey of the general aspects of boronic acid-based saccharide sensing.
引用
收藏
页码:8032 / 8048
页数:17
相关论文
共 50 条
  • [1] Selective electrochemiluminescent sensing of saccharides using boronic acid-modified coreactant
    Li, Haidong
    Sedgwick, Adam C.
    Li, Meng
    Blackburn, Richard A. R.
    Bull, Steven D.
    Arbault, Stephane
    James, Tony D.
    Sojic, Neso
    CHEMICAL COMMUNICATIONS, 2016, 52 (87) : 12845 - 12848
  • [2] Electrochemical sensing using boronic acids
    Li, Meng
    Zhu, Weihong
    Marken, Frank
    James, Tony D.
    CHEMICAL COMMUNICATIONS, 2015, 51 (78) : 14562 - 14573
  • [3] Chirality sensing of saccharides using a boronic acid-appended chiral ferrocene derivative
    Takeuchi, M
    Mizuno, T
    Shinkai, S
    Shirakami, S
    Itoh, T
    TETRAHEDRON-ASYMMETRY, 2000, 11 (16) : 3311 - 3322
  • [4] Selective fluorescence sensing of salicylic acids using a simple pyrenesulfonamide receptor
    Kumar, Ashwani
    Ghosh, Manik Kumer
    Choi, Cheol-Ho
    Kim, Hong-Seok
    RSC ADVANCES, 2015, 5 (30) : 23613 - 23621
  • [5] Selective fluorescence detection of fluoride using boronic acids
    Cooper, CR
    Spencer, N
    James, TD
    CHEMICAL COMMUNICATIONS, 1998, (13) : 1365 - +
  • [6] SELECTIVE DOPAMINE TRANSPORT USING CROWN BORONIC ACIDS
    PAUGAM, MF
    BIEN, JT
    SMITH, BD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 304 - ORGN
  • [7] Programmable selective acylation of saccharides mediated by carbene and boronic acid
    Lv, Wen-Xin
    Chen, Hang
    Zhang, Xinglong
    Ho, Chang Chin
    Liu, Yingguo
    Wu, Shuquan
    Wang, Haiqi
    Jin, Zhichao
    Chi, Yonggui Robin
    CHEM, 2022, 8 (05): : 1518 - 1534
  • [8] Simple and rapid visual sensing of saccharides
    Davis, CJ
    Lewis, PT
    McCarroll, ME
    Read, MW
    Cueto, R
    Strongin, RM
    ORGANIC LETTERS, 1999, 1 (02) : 331 - 334
  • [9] Chemical Functionalization of Oligodeoxynucleotides with Multiple Boronic Acids for the Polyvalent Binding of Saccharides
    Hargrove, Amanda E.
    Ellington, Andrew D.
    Anslyn, Eric V.
    Sessler, Jonathan L.
    BIOCONJUGATE CHEMISTRY, 2011, 22 (03) : 388 - 396
  • [10] Synthesis of TEG-linked phenyl boronic acids and their binding to saccharides.
    Frisby, XY
    Gervay, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U110 - U110