PolSAR Image Fast Classification Based on Random Similarity

被引:0
|
作者
Li, Dong [1 ]
Zhang, Yunhua [1 ]
Zhu, Feiya [1 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, Key Lab Microwave Remote Sensing, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Random similarity is used to construct an entropy/alpha-like classification of PolSAR image in terms of two parameters, i.e., the similarity-based angle a, and entropy H8. a, and H, are analogous to the Cloude-Pottier angle a and entropy H to characterize scattering mechanism and randomness, respectively. Comparative experiment with Hla classification on both airborne and spaceborne Po1SAR images demonstrates the nice target discrimination and efficiency improvement of the proposed Hs/a, scheme.
引用
收藏
页码:883 / 888
页数:6
相关论文
共 50 条
  • [1] Superpixel -Based Hybrid Discriminative Random Field for Fast PolSAR Image Classification
    Song, Wanying
    Li, Ming
    Zhang, Peng
    Wu, Yan
    Tan, Xiaofeng
    IEEE ACCESS, 2019, 7 : 24547 - 24558
  • [2] Random Similarity-Based Entropy/Alpha Classification of PolSAR Data
    Li, Dong
    Zhang, Yunhua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5712 - 5723
  • [3] PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices
    Han, Ping
    Dong, Fei
    Jia, Kun
    Han, Binbin
    IEEE ACCESS, 2019, 7 : 136986 - 136994
  • [4] An Unsupervised Classification of PolSAR Image Based on Polarimetric Scattering Similarity and Complex Wishart Classifier
    Li, Jiatong
    Li, Dong
    Zhang, Yunhua
    Yang, Jiefang
    Liang, Liting
    2022 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2022), 2022, : 812 - 817
  • [5] Wishart Deep Stacking Network for Fast POLSAR Image Classification
    Jiao, Licheng
    Liu, Fang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3273 - 3286
  • [6] Classification for Polsar image based on holder divergences
    Pan, Ting
    Peng, Dong
    Yang, Xiangli
    Huang, Pingping
    Yang, Wen
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7593 - 7596
  • [7] PolSAR Image Classification Based on Discriminative Clustering
    Wei Zhiqiang
    Bi Haixia
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (12) : 2795 - 2803
  • [8] Unsupervised PolSAR Image Classification and Segmentation Using Dirichlet Process Mixture Model and Markov Random Fields With Similarity Measure
    Song, Wanying
    Li, Ming
    Zhang, Peng
    Wu, Yan
    Jia, Lu
    An, Lin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3556 - 3568
  • [9] Combined similarity based spectral clustering ensemble for POLSAR classification
    Liu, Lu
    Wang, Rongfang
    Jiao, Licheng
    Shi, Junfei
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2015, 42 (03): : 48 - 53
  • [10] Fuzzy Superpixels Based Semi-Supervised Similarity-Constrained CNN for PolSAR Image Classification
    Guo, Yuwei
    Sun, Zhuangzhuang
    Qu, Rong
    Jiao, Licheng
    Liu, Fang
    Zhang, Xiangrong
    REMOTE SENSING, 2020, 12 (10)