Challenges and Opportunities in the Estimation of Dynamic Models

被引:11
|
作者
Xu, Ran [1 ]
DeShon, Richard P. [2 ]
Dishop, Christopher R. [3 ]
机构
[1] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
[2] Michigan State Univ, Ind Org Psychol, E Lansing, MI 48824 USA
[3] Michigan State Univ, Org Psychol, E Lansing, MI 48824 USA
关键词
longitudinal; change; dynamics; lagged response variable; hierarchical linear models; multilevel models; estimation; structural equation modeling; bias; PANEL-DATA; EFFICIENT ESTIMATION; TIME; SPECIFICATION; BEHAVIORS; PARADOX;
D O I
10.1177/1094428119842638
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Interest in modeling longitudinal processes is increasing rapidly in organizational science. Organizational scholars often employ multilevel or hierarchical linear models (HLMs) to study such processes given that longitudinal data in organizational science typically consist of observations over a relatively small number of time intervals (T) nested within a relatively large number of units (N; e.g., people, teams, organizations). In this paper, we first distinguishchangeanddynamicsas common research foci when modeling longitudinal processes and then demonstrate that a unique set of inferential hazards exists when investigating change or dynamics using multilevel models. Specifically, multilevel models that include one or more time-lagged values of the dependent variable as predictors often result in substantially biased estimates of the model parameters, inflated Type I error rates, and ultimately inaccurate inference. Using Monte Carlo simulations, we investigate the bias and Type I error rates for the standard centered/uncentered hierarchical linear model (HLM) and compare them with two alternative estimation methods: the Bollen and Brand structural equation modeling (SEM) approach and the Arrelano and Bond generalized method of moments using instrumental variables (GMM-IV) approach. We find that the commonly applied hierarchical linear model performs poorly, whereas the SEM and GMM-IV approaches generally perform well, with the SEM approach yielding slightly better performance in small samples with large autoregressive effects. We recommend the Bollen and Brand SEM approach for general use when studying change or dynamics in organizational science.
引用
收藏
页码:595 / 619
页数:25
相关论文
共 50 条
  • [1] Models of care: Opportunities and challenges
    Adewale, Victoria
    Fernandez-Criado, Rodolfo
    Turco, Alexandra
    Battle, Cynthia
    Brito, Ana Sofia De
    Feinberg, Emily
    Miller, Emily S.
    SEMINARS IN PERINATOLOGY, 2024, 48 (06)
  • [2] Challenges and Opportunities of Dynamic Geometry Environments
    Uribe-Kaffure, L.
    Castro-Gordillo, W.
    Villa-Ochoa, J.
    INVESTIGACION EN EDUCACION MATEMATICA XX, 2016, : 651 - 651
  • [3] Foundation models in ophthalmology: opportunities and challenges
    Sevgi, Mertcan
    Ruffell, Eden
    Antaki, Fares
    Chia, Mark A.
    Keane, Pearse A.
    CURRENT OPINION IN OPHTHALMOLOGY, 2025, 36 (01) : 90 - 98
  • [4] Large circuit models: opportunities and challenges
    Lei CHEN
    Yiqi CHEN
    Zhufei CHU
    Wenji FANG
    TsungYi HO
    Ru HUANG
    Yu HUANG
    Sadaf KHAN
    Min LI
    Xingquan LI
    Yu LI
    Yun LIANG
    Jinwei LIU
    Yi LIU
    Yibo LIN
    Guojie LUO
    Hongyang PAN
    Zhengyuan SHI
    Guangyu SUN
    Dimitrios TSARAS
    Runsheng WANG
    Ziyi WANG
    Xinming WEI
    Zhiyao XIE
    Qiang XU
    Chenhao XUE
    Junchi YAN
    Jun YANG
    Bei YU
    Mingxuan YUAN
    Evangeline FYYOUNG
    Xuan ZENG
    Haoyi ZHANG
    Zuodong ZHANG
    Yuxiang ZHAO
    HuiLing ZHEN
    Ziyang ZHENG
    Binwu ZHU
    Keren ZHU
    Sunan ZOU
    Science China(Information Sciences), 2024, 67 (10) : 25 - 66
  • [5] Large circuit models: opportunities and challenges
    Chen, Lei
    Chen, Yiqi
    Chu, Zhufei
    Fang, Wenji
    Ho, Tsung-Yi
    Huang, Ru
    Huang, Yu
    Khan, Sadaf
    Li, Min
    Li, Xingquan
    Li, Yu
    Liang, Yun
    Liu, Jinwei
    Liu, Yi
    Lin, Yibo
    Luo, Guojie
    Pan, Hongyang
    Shi, Zhengyuan
    Sun, Guangyu
    Tsaras, Dimitrios
    Wang, Runsheng
    Wang, Ziyi
    Wei, Xinming
    Xie, Zhiyao
    Xu, Qiang
    Xue, Chenhao
    Yan, Junchi
    Yang, Jun
    Yu, Bei
    Yuan, Mingxuan
    Young, Evangeline F. Y.
    Zeng, Xuan
    Zhang, Haoyi
    Zhang, Zuodong
    Zhao, Yuxiang
    Zhen, Hui-Ling
    Zheng, Ziyang
    Zhu, Binwu
    Zhu, Keren
    Zou, Sunan
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (10)
  • [6] RESEARCH ON BUSINESS MODELS: CHALLENGES AND OPPORTUNITIES
    Markides, Constantinos C.
    BUSINESS MODELS AND MODELLING, 2015, 33 : 133 - 147
  • [7] Continual Causal Effect Estimation: Challenges and Opportunities
    Chu, Zhixuan
    Li, Sheng
    AAAI BRIDGE PROGRAM ON CONTINUAL CAUSALITY, VOL 208, 2023, 208 : 11 - 17
  • [8] Quantum estimation, control and learning: Opportunities and challenges
    Dong, Daoyi
    Petersen, Ian R.
    ANNUAL REVIEWS IN CONTROL, 2022, 54 : 243 - 251
  • [9] Modeling Dynamic Human Behavioral Changes in Animal Disease Models: Challenges and Opportunities for Addressing Bias
    Hidano, Arata
    Enticott, Gareth
    Christley, Robert M.
    Gates, M. Carolyn
    FRONTIERS IN VETERINARY SCIENCE, 2018, 5
  • [10] High dynamic range: Standards opportunities and challenges
    Punchihewa, Amal
    ABU Technical Review, 2016, 2016-July (267): : 7 - 9