Synthesis and Characterization of Superabsorbent Cellulose-Based Hydrogel for Agriculture Application

被引:72
|
作者
Das, Dipankar [1 ]
Prakash, Priyambada [1 ]
Rout, Prasanta K. [2 ]
Bhaladhare, Sachin [1 ]
机构
[1] Tripura Univ, Dept Chem & Polymer Engn, Agartala 799022, Tripura, India
[2] Tripura Univ, Dept Mat Sci & Engn, Agartala 799022, Tripura, India
来源
STARCH-STARKE | 2021年 / 73卷 / 1-2期
关键词
agriculture; celluloses; hydrogels; nanocrystals; superabsorbent; NANOCOMPOSITES; BIODEGRADATION; NANOCRYSTALS; DESIGN;
D O I
10.1002/star.201900284
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Hydrogels are 3D network formed by linear (or branched) hydrophilic polymer molecules that are chemically or physically crosslinked. Hydrogels can absorb a prominent amount of water and biological fluids and release them at a controlled rate. This study deals with the synthesis and characterization of carboxymethylcellulose sodium salt (CMCNa) and hydroxyethyl cellulose (HEC)-based biodegradable hydrogels using citric acid (CA) as a crosslinker. The chemical analysis of synthesized hydrogels is performed using Fourier transform infrared spectroscopy. The cellulose nanocrystals (CNCs) are synthesized by an acid hydrolysis process and are incorporated into the hydrogel matrix and the effects of CNCs on hydrogel properties are assessed. The effects of the CA on hydrogels swelling properties are also studied and about 600% swelling is observed for the hydrogel synthesized using 2% of the CA crosslinker. Using CNCs as reinforcing agents for hydrogel composites decreases the tensile strength of hydrogels because of poor CNC dispersion within the hydrogel matrix is observed that can be seen in the scanning electron microscope images. The optimum use of crosslinkers and proper distribution of CNCs in the hydrogel matrix can provide a promising hydrogel material that can absorb and release water in a controlled manner to improve utilization of available water resources for agricultural applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Synthesis and Properties of Cellulose-based Superabsorbent Hydrogel by a New Crosslinker
    Heng-Xiang Li
    Xin Tian
    Luming Zhang
    Leili Wang
    Li’e Jin
    Qing Cao
    Fibers and Polymers, 2020, 21 : 1395 - 1402
  • [2] Synthesis and Properties of Cellulose-based Superabsorbent Hydrogel by a New Crosslinker
    Li, Heng-Xiang
    Tian, Xin
    Zhang, Luming
    Wang, Leili
    Jin, Li'e
    Cao, Qing
    FIBERS AND POLYMERS, 2020, 21 (07) : 1395 - 1402
  • [3] Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning
    Guo, Yu
    Guo, Rongbo
    Shi, Xiaoshuang
    Lian, Shujuan
    Zhou, Qiannan
    Chen, Ying
    Liu, Weifeng
    Li, Wei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 209 : 1169 - 1178
  • [4] Cellulose-based biodegradable superabsorbent hydrogel: A sustainable approach for water conservation and plant growth in agriculture
    Das, Dipankar
    Chingakham, Nancy
    Sarma, Mousumi
    Basu, Surochita
    Bhaladhare, Sachin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 305
  • [5] Bacterial Cellulose-Based Superabsorbent Hydrogel for Wet Wound Dressing
    Mo, Meiqing
    Wu, Chaojun
    Chen, Yehong
    MOLECULES, 2025, 30 (03):
  • [6] Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture
    Demitri, C.
    Scalera, F.
    Madaghiele, M.
    Sannino, A.
    Maffezzoli, A.
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013
  • [7] Construction and application of cellulose-based hydrogel
    Cui, Yexuan
    Tong, Yana
    Liu, Weidong
    Li, Zheng
    Gong, Jixian
    Qiao, Changsheng
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2023, 51 (09): : 37 - 51
  • [8] Cellulose-based hydrogel beads: Preparation and characterization
    Nie, Guangjun
    Zang, Yipeng
    Yue, Wenjin
    Wang, Mengmeng
    Baride, Aravind
    Sigdel, Aliza
    Janaswamy, Srinivas
    CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS, 2021, 2
  • [9] Pectin and mucin modified cellulose-based superabsorbent hydrogel for controlled curcumin release
    Islam, Farhana
    Wong, Siew Yee
    Li, Xu
    Arafat, M. Tarik
    CELLULOSE, 2022, 29 (09) : 5207 - 5222
  • [10] Pectin and mucin modified cellulose-based superabsorbent hydrogel for controlled curcumin release
    Farhana Islam
    Siew Yee Wong
    Xu Li
    M. Tarik Arafat
    Cellulose, 2022, 29 : 5207 - 5222