Counting nilpotent endomorphisms

被引:12
|
作者
Crabb, MC [1 ]
机构
[1] Univ Aberdeen, Dept Math Sci, Aberdeen AB24 3UE, Scotland
关键词
nilpotent matrix; Prufer code;
D O I
10.1016/j.ffa.2005.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variant of Priffer's classical proof of Cayley's theorem on the enumeration of labelled trees counts the nilpotent self-maps of a pointed finite set. Essentially, the same argument can be used to establish the result of Fine and Herstein [Illinois J. Math. 2 (1958) 499-504] that the number of nilpotent n x n matrices over the finite field F-q is q(n)((n-1)). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 154
页数:4
相关论文
共 50 条