Twitter-Enhanced Android Malware Detection

被引:0
|
作者
DeLoach, Jordan [1 ]
Caragea, Doina [1 ]
机构
[1] Kansas State Univ, Dept Comp Sci, Manhattan, KS 66506 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2017年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In data-driven Android malware detection, large numbers of both malicious and benign apps are used to train machine learning classifiers to detect malware. Existing approaches have nearly exclusively focused on app contents to extract features for classification. We seek to understand if auxiliary data, specifically Twitter data, can be used to improve the performance of existing approaches for Android malware detection. Throughout the course of our research, we collected over 50 million tweets potentially related to Android apps. We propose to link tweets with apps using approaches inspired from the standard vector space model, and subsequently study the usefulness of the linked tweets in malware detection. We find that Twitter data accurately linked to apps through HTTP links can be used to improve the machine learning classifier performance across a variety of common malware detection classifiers. However, classification experiments with Twitter data automatically linked to apps reveal the need for future work on more robust linking approaches.
引用
收藏
页码:4648 / 4657
页数:10
相关论文
共 50 条
  • [1] EAODroid: Android Malware Detection Based on Enhanced API Order
    HUANG Lu
    XUE Jingfeng
    WANG Yong
    QU Dacheng
    CHEN Junbao
    ZHANG Nan
    ZHANG Li
    Chinese Journal of Electronics, 2023, 32 (05) : 1169 - 1178
  • [2] EAODroid: Android Malware Detection Based on Enhanced API Order
    Huang Lu
    Xue Jingfeng
    Wang Yong
    Qu Dacheng
    Chen Junbao
    Zhang Nan
    Zhang Li
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (05) : 1169 - 1178
  • [3] SEDMDroid: An Enhanced Stacking Ensemble Framework for Android Malware Detection
    Zhu, Huijuan
    Li, Yang
    Li, Ruidong
    Li, Jianqiang
    You, Zhuhong
    Song, Houbing
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (02): : 984 - 994
  • [4] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [5] Detection of Repackaged Android Malware
    Shahriar, Hossain
    Clincy, Victor
    2014 9TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2014, : 349 - 354
  • [6] Smart malware detection on Android
    Gheorghe, Laura
    Marin, Bogdan
    Gibson, Gary
    Mogosanu, Lucian
    Deaconescu, Razvan
    Voiculescu, Valentin-Gabriel
    Carabas, Mihai
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) : 4254 - 4272
  • [7] TRENDS IN ANDROID MALWARE DETECTION
    Shaerpour, Kaveh
    Dehghantanha, Ali
    Mahmod, Ramlan
    JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2013, 8 (03) : 21 - 40
  • [8] Android malware detection model
    Yang H.
    Na Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 45 - 51
  • [9] Android Fragmentation in Malware Detection
    Long Nguyen-Vu
    Ahn, Jinung
    Jung, Souhwan
    COMPUTERS & SECURITY, 2019, 87
  • [10] An Enhanced Deep Learning Neural Network for the Detection and Identification of Android Malware
    Musikawan, Pakarat
    Kongsorot, Yanika
    You, Ilsun
    So-In, Chakchai
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 8560 - 8577